轮廓引导曲面变形的体积分割

M. Holloway, T. Ju, C. Grimm
{"title":"轮廓引导曲面变形的体积分割","authors":"M. Holloway, T. Ju, C. Grimm","doi":"10.1145/2787626.2792638","DOIUrl":null,"url":null,"abstract":"In clinical practice, when a subject is imaged (i.e. CT scan or MRI) the result is a 3D image of volumetric data. In order to study the organ, bone, or other object of interest, this data needs to be segmented to obtain a 3D model that can be used in any number of down stream applications. When used for treatment planning these segmentations need to not only be accurate but also produced quickly to avoid health risks. Automatic segmentation methods are becoming more reliable but many experts in the scientific community still rely on time consuming manual segmentation.","PeriodicalId":269034,"journal":{"name":"ACM SIGGRAPH 2015 Posters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contour guided surface deformation for volumetric segmentation\",\"authors\":\"M. Holloway, T. Ju, C. Grimm\",\"doi\":\"10.1145/2787626.2792638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clinical practice, when a subject is imaged (i.e. CT scan or MRI) the result is a 3D image of volumetric data. In order to study the organ, bone, or other object of interest, this data needs to be segmented to obtain a 3D model that can be used in any number of down stream applications. When used for treatment planning these segmentations need to not only be accurate but also produced quickly to avoid health risks. Automatic segmentation methods are becoming more reliable but many experts in the scientific community still rely on time consuming manual segmentation.\",\"PeriodicalId\":269034,\"journal\":{\"name\":\"ACM SIGGRAPH 2015 Posters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2015 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2787626.2792638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2015 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2787626.2792638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在临床实践中,当受试者被成像(即CT扫描或MRI)时,结果是体积数据的3D图像。为了研究器官、骨骼或其他感兴趣的对象,需要对这些数据进行分割,以获得可用于任何数量的下游应用程序的3D模型。当用于治疗计划时,这些分段不仅需要准确,而且需要迅速产生,以避免健康风险。自动分割方法正变得越来越可靠,但科学界的许多专家仍然依赖于耗时的人工分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour guided surface deformation for volumetric segmentation
In clinical practice, when a subject is imaged (i.e. CT scan or MRI) the result is a 3D image of volumetric data. In order to study the organ, bone, or other object of interest, this data needs to be segmented to obtain a 3D model that can be used in any number of down stream applications. When used for treatment planning these segmentations need to not only be accurate but also produced quickly to avoid health risks. Automatic segmentation methods are becoming more reliable but many experts in the scientific community still rely on time consuming manual segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信