用于可视化建模的光谱直方图表示

Xiuwen Liu, Qiang Zhang
{"title":"用于可视化建模的光谱直方图表示","authors":"Xiuwen Liu, Qiang Zhang","doi":"10.1109/AIPR.2003.1284272","DOIUrl":null,"url":null,"abstract":"We present spectral histogram representations for visual modeling. Based on a generative process, the representation is derived by partitioning the frequency domain into small disjoint regions and assuming independence among the regions. This gives rise to a set of filters and a representation consisting of marginal distributions of those filter responses. A distinct advantage of our representation is that it can be effectively used for different classification and recognition tasks, which is demonstrated by experiments and comparisons in texture classification, face recognition, and appearance-based 3D object recognition. The marked improvement over existing methods justifies our principle that effective priori knowledge should be derived from physical generative processes.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral histogram representations for visual modeling\",\"authors\":\"Xiuwen Liu, Qiang Zhang\",\"doi\":\"10.1109/AIPR.2003.1284272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present spectral histogram representations for visual modeling. Based on a generative process, the representation is derived by partitioning the frequency domain into small disjoint regions and assuming independence among the regions. This gives rise to a set of filters and a representation consisting of marginal distributions of those filter responses. A distinct advantage of our representation is that it can be effectively used for different classification and recognition tasks, which is demonstrated by experiments and comparisons in texture classification, face recognition, and appearance-based 3D object recognition. The marked improvement over existing methods justifies our principle that effective priori knowledge should be derived from physical generative processes.\",\"PeriodicalId\":176987,\"journal\":{\"name\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2003.1284272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了用于可视化建模的光谱直方图表示。基于生成过程,通过将频域划分为小的不相交区域并假设区域之间的独立性来导出表示。这就产生了一组滤波器和由这些滤波器响应的边际分布组成的表示。通过纹理分类、人脸识别和基于外观的3D物体识别的实验和比较,我们的表征方法的一个明显优势是可以有效地用于不同的分类和识别任务。对现有方法的显著改进证明了我们的原则,即有效的先验知识应该来自物理生成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral histogram representations for visual modeling
We present spectral histogram representations for visual modeling. Based on a generative process, the representation is derived by partitioning the frequency domain into small disjoint regions and assuming independence among the regions. This gives rise to a set of filters and a representation consisting of marginal distributions of those filter responses. A distinct advantage of our representation is that it can be effectively used for different classification and recognition tasks, which is demonstrated by experiments and comparisons in texture classification, face recognition, and appearance-based 3D object recognition. The marked improvement over existing methods justifies our principle that effective priori knowledge should be derived from physical generative processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信