基于流形学习和HMM的步态识别

Ming-Hsu Cheng, Meng-Fen Ho, Chung-Lin Huang
{"title":"基于流形学习和HMM的步态识别","authors":"Ming-Hsu Cheng, Meng-Fen Ho, Chung-Lin Huang","doi":"10.1109/ISCAS.2007.378088","DOIUrl":null,"url":null,"abstract":"With the increasing demands of visual surveillance systems, human identification at a distance has gained more interest. Gait is often used as an unobtrusive biometric offering the possibility to identify individuals at a distance without any interaction or co-operation with the subject. This paper presents a novel effectively method for automatic viewpoint and person identification by using only the sequence of gait silhouette. The gait silhouettes are nonlinearly transformed into low dimensional embedding and the dynamics in time-series images are modeled by HMM in the corresponding embedding space. The experimental results demonstrate that the proposed algorithm is an encouraging progress for automatic human identification.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Gait Analysis For Human Identification Through Manifold Learning and HMM\",\"authors\":\"Ming-Hsu Cheng, Meng-Fen Ho, Chung-Lin Huang\",\"doi\":\"10.1109/ISCAS.2007.378088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing demands of visual surveillance systems, human identification at a distance has gained more interest. Gait is often used as an unobtrusive biometric offering the possibility to identify individuals at a distance without any interaction or co-operation with the subject. This paper presents a novel effectively method for automatic viewpoint and person identification by using only the sequence of gait silhouette. The gait silhouettes are nonlinearly transformed into low dimensional embedding and the dynamics in time-series images are modeled by HMM in the corresponding embedding space. The experimental results demonstrate that the proposed algorithm is an encouraging progress for automatic human identification.\",\"PeriodicalId\":177842,\"journal\":{\"name\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2007.378088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2007.378088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

随着人们对视觉监控系统需求的不断增加,远距离的人体识别受到越来越多的关注。步态通常被用作一种不引人注目的生物特征,提供了在没有任何互动或合作的情况下识别远距离个体的可能性。提出了一种仅利用步态轮廓序列进行视点和人的自动识别的新方法。将步态轮廓非线性变换为低维嵌入,并在相应的嵌入空间中利用隐马尔可夫模型对时间序列图像进行动态建模。实验结果表明,该算法在人体自动识别方面取得了令人鼓舞的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait Analysis For Human Identification Through Manifold Learning and HMM
With the increasing demands of visual surveillance systems, human identification at a distance has gained more interest. Gait is often used as an unobtrusive biometric offering the possibility to identify individuals at a distance without any interaction or co-operation with the subject. This paper presents a novel effectively method for automatic viewpoint and person identification by using only the sequence of gait silhouette. The gait silhouettes are nonlinearly transformed into low dimensional embedding and the dynamics in time-series images are modeled by HMM in the corresponding embedding space. The experimental results demonstrate that the proposed algorithm is an encouraging progress for automatic human identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信