{"title":"利用电热水器的需求侧管理减轻插电式电动汽车对配电系统的影响","authors":"Majid Moradzadeh, M. Abdelaziz","doi":"10.1109/CCECE.2018.8447603","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of electric water heaters (EWH), already existing in residential distribution systems, to mitigate the impacts of the increasing integration of plug-in electric vehicles (PEVs). By controlling the thermostat setpoint of the EWHs within the distribution system, the peak demand due to the PEVs charging is flattened. The proposed control scheme has been verified using a simulation model developed in MATLAB environment. Simulation results on a 33-bus distribution test system reveal the potential of the proposed control scheme to mitigate the impacts of increased PEV penetration while meeting the EWHs hot water demand requirements.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mitigating the Impact of Plug-In Electric Vehicles on Distribution Systems Using Demand-Side Management of Electric Water Heaters\",\"authors\":\"Majid Moradzadeh, M. Abdelaziz\",\"doi\":\"10.1109/CCECE.2018.8447603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of electric water heaters (EWH), already existing in residential distribution systems, to mitigate the impacts of the increasing integration of plug-in electric vehicles (PEVs). By controlling the thermostat setpoint of the EWHs within the distribution system, the peak demand due to the PEVs charging is flattened. The proposed control scheme has been verified using a simulation model developed in MATLAB environment. Simulation results on a 33-bus distribution test system reveal the potential of the proposed control scheme to mitigate the impacts of increased PEV penetration while meeting the EWHs hot water demand requirements.\",\"PeriodicalId\":181463,\"journal\":{\"name\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2018.8447603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigating the Impact of Plug-In Electric Vehicles on Distribution Systems Using Demand-Side Management of Electric Water Heaters
This paper proposes the use of electric water heaters (EWH), already existing in residential distribution systems, to mitigate the impacts of the increasing integration of plug-in electric vehicles (PEVs). By controlling the thermostat setpoint of the EWHs within the distribution system, the peak demand due to the PEVs charging is flattened. The proposed control scheme has been verified using a simulation model developed in MATLAB environment. Simulation results on a 33-bus distribution test system reveal the potential of the proposed control scheme to mitigate the impacts of increased PEV penetration while meeting the EWHs hot water demand requirements.