使用与JFML库兼容的新的模糊规则库系统实现增强ORCA框架

Francisco J. Rodríguez-Lozano, D. Guijo-Rubio, Pedro Antonio Gutiérrez, J. M. Soto-Hidalgo, J. C. Gámez-Granados
{"title":"使用与JFML库兼容的新的模糊规则库系统实现增强ORCA框架","authors":"Francisco J. Rodríguez-Lozano, D. Guijo-Rubio, Pedro Antonio Gutiérrez, J. M. Soto-Hidalgo, J. C. Gámez-Granados","doi":"10.1109/FUZZ45933.2021.9494526","DOIUrl":null,"url":null,"abstract":"Classification and regression techniques are two of the main tasks considered by the Machine Learning area. They mainly depend on the target variable to predict. In this context, ordinal classification represents an intermediate task, which is focused on the prediction of nominal variables where the categories follow a specific intrinsic order given by the problem. Nevertheless, the integration of different algorithms able to solve ordinal classification problems is often unavailable in most of existing Machine Learning software, which hinders the use of new approaches. Therefore, this paper focuses on the incorporation of an ordinal classification algorithm (NSLVOrd) in one of the most complete ordinal regression frameworks, “Ordinal Regression and Classification Algorithms framework (ORCA)” by using both fuzzy rules and the JFML library. The use of NSLVOrd in the ORCA tool as well as a case study with a real database are shown where the obtained results are promising.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing the ORCA framework with a new Fuzzy Rule Base System implementation compatible with the JFML library\",\"authors\":\"Francisco J. Rodríguez-Lozano, D. Guijo-Rubio, Pedro Antonio Gutiérrez, J. M. Soto-Hidalgo, J. C. Gámez-Granados\",\"doi\":\"10.1109/FUZZ45933.2021.9494526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification and regression techniques are two of the main tasks considered by the Machine Learning area. They mainly depend on the target variable to predict. In this context, ordinal classification represents an intermediate task, which is focused on the prediction of nominal variables where the categories follow a specific intrinsic order given by the problem. Nevertheless, the integration of different algorithms able to solve ordinal classification problems is often unavailable in most of existing Machine Learning software, which hinders the use of new approaches. Therefore, this paper focuses on the incorporation of an ordinal classification algorithm (NSLVOrd) in one of the most complete ordinal regression frameworks, “Ordinal Regression and Classification Algorithms framework (ORCA)” by using both fuzzy rules and the JFML library. The use of NSLVOrd in the ORCA tool as well as a case study with a real database are shown where the obtained results are promising.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分类和回归技术是机器学习领域考虑的两个主要任务。它们主要依靠目标变量进行预测。在这种情况下,有序分类代表了一种中间任务,其重点是对名义变量的预测,其中类别遵循问题给定的特定内在顺序。然而,在大多数现有的机器学习软件中,通常无法集成能够解决有序分类问题的不同算法,这阻碍了新方法的使用。因此,本文的重点是利用模糊规则和JFML库,在最完整的有序回归框架之一“有序回归和分类算法框架(ORCA)”中加入一个有序分类算法(nslword)。在ORCA工具中使用了nslword,并在实际数据库中进行了案例研究,获得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the ORCA framework with a new Fuzzy Rule Base System implementation compatible with the JFML library
Classification and regression techniques are two of the main tasks considered by the Machine Learning area. They mainly depend on the target variable to predict. In this context, ordinal classification represents an intermediate task, which is focused on the prediction of nominal variables where the categories follow a specific intrinsic order given by the problem. Nevertheless, the integration of different algorithms able to solve ordinal classification problems is often unavailable in most of existing Machine Learning software, which hinders the use of new approaches. Therefore, this paper focuses on the incorporation of an ordinal classification algorithm (NSLVOrd) in one of the most complete ordinal regression frameworks, “Ordinal Regression and Classification Algorithms framework (ORCA)” by using both fuzzy rules and the JFML library. The use of NSLVOrd in the ORCA tool as well as a case study with a real database are shown where the obtained results are promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信