贝叶斯最大边际聚类

Bo Dai, Bao-Gang Hu, Gang Niu
{"title":"贝叶斯最大边际聚类","authors":"Bo Dai, Bao-Gang Hu, Gang Niu","doi":"10.1109/ICDM.2010.117","DOIUrl":null,"url":null,"abstract":"Most well-known discriminative clustering models, such as spectral clustering (SC) and maximum margin clustering (MMC), are non-Bayesian. Moreover, they merely considered to embed domain-dependent prior knowledge into data-specific kernels, while other forms of prior knowledge were seldom considered in these models. In this paper, we propose a Bayesian maximum margin clustering model (BMMC) based on the low-density separation assumption, which unifies the merits of both Bayesian and discriminative approaches. In addition to stating prior distribution on functions explicitly as traditional Gaussian processes, special prior knowledge can be embedded into BMMC implicitly via the Universum set easily. Furthermore, it is much easier to solve a BMMC than an MMC since the integer variables in the optimization are eliminated. Experimental results show that the BMMC achieves comparable or even better performance than state-of-the-art clustering methods and solving BMMC is more efficiently.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"65 2 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bayesian Maximum Margin Clustering\",\"authors\":\"Bo Dai, Bao-Gang Hu, Gang Niu\",\"doi\":\"10.1109/ICDM.2010.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most well-known discriminative clustering models, such as spectral clustering (SC) and maximum margin clustering (MMC), are non-Bayesian. Moreover, they merely considered to embed domain-dependent prior knowledge into data-specific kernels, while other forms of prior knowledge were seldom considered in these models. In this paper, we propose a Bayesian maximum margin clustering model (BMMC) based on the low-density separation assumption, which unifies the merits of both Bayesian and discriminative approaches. In addition to stating prior distribution on functions explicitly as traditional Gaussian processes, special prior knowledge can be embedded into BMMC implicitly via the Universum set easily. Furthermore, it is much easier to solve a BMMC than an MMC since the integer variables in the optimization are eliminated. Experimental results show that the BMMC achieves comparable or even better performance than state-of-the-art clustering methods and solving BMMC is more efficiently.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"65 2 Pt 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大多数著名的判别聚类模型,如谱聚类(SC)和最大边际聚类(MMC),都是非贝叶斯的。此外,他们只考虑将领域相关的先验知识嵌入到特定于数据的核中,而在这些模型中很少考虑其他形式的先验知识。本文提出了一种基于低密度分离假设的贝叶斯最大边际聚类模型(BMMC),该模型综合了贝叶斯聚类方法和判别聚类方法的优点。除了像传统高斯过程那样显式地陈述函数上的先验分布外,还可以通过Universum集合轻松地将特殊先验知识隐式嵌入到BMMC中。此外,由于消除了优化中的整数变量,因此求解BMMC比求解MMC要容易得多。实验结果表明,BMMC的性能与现有的聚类方法相当甚至更好,求解BMMC的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Maximum Margin Clustering
Most well-known discriminative clustering models, such as spectral clustering (SC) and maximum margin clustering (MMC), are non-Bayesian. Moreover, they merely considered to embed domain-dependent prior knowledge into data-specific kernels, while other forms of prior knowledge were seldom considered in these models. In this paper, we propose a Bayesian maximum margin clustering model (BMMC) based on the low-density separation assumption, which unifies the merits of both Bayesian and discriminative approaches. In addition to stating prior distribution on functions explicitly as traditional Gaussian processes, special prior knowledge can be embedded into BMMC implicitly via the Universum set easily. Furthermore, it is much easier to solve a BMMC than an MMC since the integer variables in the optimization are eliminated. Experimental results show that the BMMC achieves comparable or even better performance than state-of-the-art clustering methods and solving BMMC is more efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信