基于堆叠压缩自编码器的文本分类研究

Yang Yu, Jing Hui
{"title":"基于堆叠压缩自编码器的文本分类研究","authors":"Yang Yu, Jing Hui","doi":"10.1109/EIIS.2017.8298701","DOIUrl":null,"url":null,"abstract":"In order to improve the classification effect of text classification and reduce the error rate of classification, this paper proposes the thought of text classification based on Stacked Contractive Auto-Encoder (SCAE) by stacking network layer by layer, the SCAE constitutes the depth of the neural network by unsupervised training and learning text to improve the robustness of feature extraction, the network uses the gradient descent algorithm to optimize parameters of the network. This paper adopts an improved TFIDF method calculating the weight of feature words. Though experiments, the CAE and SAE (Sparse Auto-Encoder) are compared, the support vector machine (SVM) is used to classify text. Experiment result shows that the classification performance of single layer CAE is better than that of single layer SAE, and the classification performance of SCAE is better than that of SSAE (Stacked Sparse Auto-Encoder).","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on text classification based on stacked contractive auto-encoder\",\"authors\":\"Yang Yu, Jing Hui\",\"doi\":\"10.1109/EIIS.2017.8298701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the classification effect of text classification and reduce the error rate of classification, this paper proposes the thought of text classification based on Stacked Contractive Auto-Encoder (SCAE) by stacking network layer by layer, the SCAE constitutes the depth of the neural network by unsupervised training and learning text to improve the robustness of feature extraction, the network uses the gradient descent algorithm to optimize parameters of the network. This paper adopts an improved TFIDF method calculating the weight of feature words. Though experiments, the CAE and SAE (Sparse Auto-Encoder) are compared, the support vector machine (SVM) is used to classify text. Experiment result shows that the classification performance of single layer CAE is better than that of single layer SAE, and the classification performance of SCAE is better than that of SSAE (Stacked Sparse Auto-Encoder).\",\"PeriodicalId\":434246,\"journal\":{\"name\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIIS.2017.8298701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了提高文本分类的分类效果,降低分类错误率,本文提出了基于堆叠压缩自编码器(SCAE)的文本分类思路,通过层层堆叠网络,SCAE通过无监督训练和文本学习构成神经网络的深度,提高特征提取的鲁棒性,网络采用梯度下降算法对网络参数进行优化。本文采用一种改进的TFIDF方法计算特征词的权重。通过实验,比较了CAE和SAE (Sparse Auto-Encoder)算法,采用支持向量机(SVM)对文本进行分类。实验结果表明,单层CAE的分类性能优于单层SAE, SCAE的分类性能优于SSAE (Stacked Sparse Auto-Encoder,堆叠稀疏自编码器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on text classification based on stacked contractive auto-encoder
In order to improve the classification effect of text classification and reduce the error rate of classification, this paper proposes the thought of text classification based on Stacked Contractive Auto-Encoder (SCAE) by stacking network layer by layer, the SCAE constitutes the depth of the neural network by unsupervised training and learning text to improve the robustness of feature extraction, the network uses the gradient descent algorithm to optimize parameters of the network. This paper adopts an improved TFIDF method calculating the weight of feature words. Though experiments, the CAE and SAE (Sparse Auto-Encoder) are compared, the support vector machine (SVM) is used to classify text. Experiment result shows that the classification performance of single layer CAE is better than that of single layer SAE, and the classification performance of SCAE is better than that of SSAE (Stacked Sparse Auto-Encoder).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信