{"title":"多项式中的MCN-2不变量、同态和异常与“代数基本定理”","authors":"Michael C. I. Nwogugu","doi":"10.2139/ssrn.2375024","DOIUrl":null,"url":null,"abstract":"This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).","PeriodicalId":198407,"journal":{"name":"IRPN: Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCN-2 Invariants, Homomorphisms, and Anomalies in Polynomials and the 'Fundamental Theorem of Algebra'\",\"authors\":\"Michael C. I. Nwogugu\",\"doi\":\"10.2139/ssrn.2375024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).\",\"PeriodicalId\":198407,\"journal\":{\"name\":\"IRPN: Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRPN: Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2375024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2375024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MCN-2 Invariants, Homomorphisms, and Anomalies in Polynomials and the 'Fundamental Theorem of Algebra'
This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).