多项式中的MCN-2不变量、同态和异常与“代数基本定理”

IRPN: Science Pub Date : 1900-01-01 DOI:10.2139/ssrn.2375024
Michael C. I. Nwogugu
{"title":"多项式中的MCN-2不变量、同态和异常与“代数基本定理”","authors":"Michael C. I. Nwogugu","doi":"10.2139/ssrn.2375024","DOIUrl":null,"url":null,"abstract":"This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).","PeriodicalId":198407,"journal":{"name":"IRPN: Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCN-2 Invariants, Homomorphisms, and Anomalies in Polynomials and the 'Fundamental Theorem of Algebra'\",\"authors\":\"Michael C. I. Nwogugu\",\"doi\":\"10.2139/ssrn.2375024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).\",\"PeriodicalId\":198407,\"journal\":{\"name\":\"IRPN: Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRPN: Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2375024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2375024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对现有文献的贡献是:i)证明了笛卡尔符号规则(由大多数学者解释,如Oehmke(2000)和Osborne(2010))是错误的;ii)证明代数基本定理(FTA)是错误的;iii)解释代数中的“根计算”是错误的,并介绍验证多项式的实根和复根的替代方法;iv)通过引入新的不变量(“MCN-2不变量”)和同态,求解一个六次多项式方程和一个九次多项式方程。Burrus (2004);Sitton, Burrus, Fox & Treitel (2003);Lei, Blane和Cooper(1996)得出结论,这种高阶多项式是不可能求解的。这些问题适用于非线性分析、进化计算和模式分析——考虑到Yannacopoulos、Brindley、Merkin & Pilling(1996)的讨论;Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015);郑、高松、池内(2010);Boyer & Goh(2007)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCN-2 Invariants, Homomorphisms, and Anomalies in Polynomials and the 'Fundamental Theorem of Algebra'
This article contributes to the existing literature by: i) proving that the Descartes Sign Rule (as interpreted by most academicians - such as Oehmke (2000) and Osborne (2010)) is wrong; ii) proving that the Fundamental Theorem Of Algebra (FTA) is wrong; iii) explaining how “Root-Calculation” in Algebra is wrong and introducing an alternative method for verifying real and complex roots of a polynomial; iv) solving a six-degree Polynomial equation and a nine-degree Polynomial equation, by introducing new classes of Invariants (“MCN-2 Invariants”) and Homomorphisms. Burrus (2004); Sitton, Burrus, Fox & Treitel (2003); and Lei, Blane & Cooper (1996), had concluded that such higher-order polynomials were impossible to solve. These issues are applicable in nonlinear analysis, evolutionary computation and pattern-analysis – given the discussions in Yannacopoulos, Brindley, Merkin & Pilling (1996); Campos-Canton, Aguirre-Hernandez, Renteria & Gonzalez (2015); Zheng, Takamatsu & Ikeuchi (2010); and Boyer & Goh (2007).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信