{"title":"更快的轻松乘法","authors":"J. Hoeven","doi":"10.1145/2608628.2608657","DOIUrl":null,"url":null,"abstract":"In previous work, we have introduced several fast algorithms for relaxed power series multiplication (also known under the name on-line multiplication) up to a given order n. The fastest currently known algorithm works over an effective base field K with sufficiently many 2p-th roots of unity and has algebraic time complexity O(n log ne2[EQUATION]). In this paper, we will generalize this algorithm to the cases when K is replaced by an effective ring of positive characteristic or by an effective ring of characteristic zero, which is also torsion-free as a Z-module and comes with an additional algorithm for partial division by integers. In particular, we may take K to be any effective field. We will also present an asymptotically faster algorithm for relaxed multiplication of p-adic numbers.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Faster relaxed multiplication\",\"authors\":\"J. Hoeven\",\"doi\":\"10.1145/2608628.2608657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we have introduced several fast algorithms for relaxed power series multiplication (also known under the name on-line multiplication) up to a given order n. The fastest currently known algorithm works over an effective base field K with sufficiently many 2p-th roots of unity and has algebraic time complexity O(n log ne2[EQUATION]). In this paper, we will generalize this algorithm to the cases when K is replaced by an effective ring of positive characteristic or by an effective ring of characteristic zero, which is also torsion-free as a Z-module and comes with an additional algorithm for partial division by integers. In particular, we may take K to be any effective field. We will also present an asymptotically faster algorithm for relaxed multiplication of p-adic numbers.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In previous work, we have introduced several fast algorithms for relaxed power series multiplication (also known under the name on-line multiplication) up to a given order n. The fastest currently known algorithm works over an effective base field K with sufficiently many 2p-th roots of unity and has algebraic time complexity O(n log ne2[EQUATION]). In this paper, we will generalize this algorithm to the cases when K is replaced by an effective ring of positive characteristic or by an effective ring of characteristic zero, which is also torsion-free as a Z-module and comes with an additional algorithm for partial division by integers. In particular, we may take K to be any effective field. We will also present an asymptotically faster algorithm for relaxed multiplication of p-adic numbers.