基于CSSD和SVM的脑电信号识别

Ming-ai Li, ChanChan Lu
{"title":"基于CSSD和SVM的脑电信号识别","authors":"Ming-ai Li, ChanChan Lu","doi":"10.1109/WCICA.2012.6359377","DOIUrl":null,"url":null,"abstract":"With time-varying volatility and individual differences, EEG signals are difficult to analyse. The recognition performance of the traditional feature extraction is lowered due of the difficulty in tracking the dynamic changes of EEG. In this paper the Common Spatial Subspace Decomposition (CSSD) algorithm was improved (named Improved-CSSD), putting forward a kind feature extraction method which has the performance of adaptive ability. This method introduced control parameters, which added the training samples of the assistants to that of the target subject in some way. Finally, based on the data of the international BCI competition database, some simulation experiments were conducted by recognizing EEG signals by Improved-CSSD and SVM. Compared with the traditional CSSD, classification accuracy was increased about 8.26% by Improved-CSSD. The result showed that the approach, proposed in this paper, had a good adaptability and a low time loss.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The recognition of EEG with CSSD and SVM\",\"authors\":\"Ming-ai Li, ChanChan Lu\",\"doi\":\"10.1109/WCICA.2012.6359377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With time-varying volatility and individual differences, EEG signals are difficult to analyse. The recognition performance of the traditional feature extraction is lowered due of the difficulty in tracking the dynamic changes of EEG. In this paper the Common Spatial Subspace Decomposition (CSSD) algorithm was improved (named Improved-CSSD), putting forward a kind feature extraction method which has the performance of adaptive ability. This method introduced control parameters, which added the training samples of the assistants to that of the target subject in some way. Finally, based on the data of the international BCI competition database, some simulation experiments were conducted by recognizing EEG signals by Improved-CSSD and SVM. Compared with the traditional CSSD, classification accuracy was increased about 8.26% by Improved-CSSD. The result showed that the approach, proposed in this paper, had a good adaptability and a low time loss.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6359377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6359377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

脑电图信号具有时变波动性和个体差异性,分析难度较大。传统的特征提取方法由于难以跟踪脑电信号的动态变化,降低了识别性能。本文对公共空间子空间分解(Common Spatial Subspace Decomposition, CSSD)算法进行了改进,提出了一种具有自适应能力的特征提取方法。该方法引入控制参数,以某种方式将助手的训练样本添加到目标对象的训练样本中。最后,基于国际脑机接口竞赛数据库的数据,采用改进的cssd和支持向量机对脑电信号进行了识别仿真实验。与传统CSSD相比,改进后的CSSD分类准确率提高了8.26%左右。结果表明,本文提出的方法具有较好的适应性和较低的时间损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The recognition of EEG with CSSD and SVM
With time-varying volatility and individual differences, EEG signals are difficult to analyse. The recognition performance of the traditional feature extraction is lowered due of the difficulty in tracking the dynamic changes of EEG. In this paper the Common Spatial Subspace Decomposition (CSSD) algorithm was improved (named Improved-CSSD), putting forward a kind feature extraction method which has the performance of adaptive ability. This method introduced control parameters, which added the training samples of the assistants to that of the target subject in some way. Finally, based on the data of the international BCI competition database, some simulation experiments were conducted by recognizing EEG signals by Improved-CSSD and SVM. Compared with the traditional CSSD, classification accuracy was increased about 8.26% by Improved-CSSD. The result showed that the approach, proposed in this paper, had a good adaptability and a low time loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信