猪胃黏膜H, k - atp酶的SDS纯化。

L A Yeh, P Cosgrove, W F Holt
{"title":"猪胃黏膜H, k - atp酶的SDS纯化。","authors":"L A Yeh,&nbsp;P Cosgrove,&nbsp;W F Holt","doi":"10.3109/09687689009025835","DOIUrl":null,"url":null,"abstract":"<p><p>A highly purified membrane fraction of H,K-ATPase was isolated from hog gastric mucosa by using differential centrifugation, sodium dodecyl sulfate (SDS:0.125%) treatment and density-gradient centrifugation. The final fraction showed a major band at 97 kD by SDS-gel electrophoresis. This purified H,K-ATPase sedimented at the interface of a 28-35% sucrose step gradient and displayed a specific activity of 140-170 mumol Pi/h/mg protein and a ratio of K-stimulated ATPase activity to Mg-stimulated ATPase activity of 6.5-8.7. The apparent Km for ATP was 0.154 mM and the Km for K+ was o.6 mM. The enzymatic activity recovered from this purification procedure was K(+)-ionophore-independent. SDS treatment in the presence of 2.5 mM ATP did not change the kinetic properties of the isolated enzyme. Exclusion of ATP during SDS solubilization diminished the enzymatic activity by 90%, indicating that ATP protection is essential for the full recovery of enzymatic activity. In summary, mild SDS solubilization can be used to purify relatively large quantities of active H,K-ATPase to near homogeneity without altering the enzyme's kinetic properties.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"9 2","pages":"129-40"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687689009025835","citationCount":"10","resultStr":"{\"title\":\"SDS purification of porcine H,K-ATPase from gastric mucosa.\",\"authors\":\"L A Yeh,&nbsp;P Cosgrove,&nbsp;W F Holt\",\"doi\":\"10.3109/09687689009025835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A highly purified membrane fraction of H,K-ATPase was isolated from hog gastric mucosa by using differential centrifugation, sodium dodecyl sulfate (SDS:0.125%) treatment and density-gradient centrifugation. The final fraction showed a major band at 97 kD by SDS-gel electrophoresis. This purified H,K-ATPase sedimented at the interface of a 28-35% sucrose step gradient and displayed a specific activity of 140-170 mumol Pi/h/mg protein and a ratio of K-stimulated ATPase activity to Mg-stimulated ATPase activity of 6.5-8.7. The apparent Km for ATP was 0.154 mM and the Km for K+ was o.6 mM. The enzymatic activity recovered from this purification procedure was K(+)-ionophore-independent. SDS treatment in the presence of 2.5 mM ATP did not change the kinetic properties of the isolated enzyme. Exclusion of ATP during SDS solubilization diminished the enzymatic activity by 90%, indicating that ATP protection is essential for the full recovery of enzymatic activity. In summary, mild SDS solubilization can be used to purify relatively large quantities of active H,K-ATPase to near homogeneity without altering the enzyme's kinetic properties.</p>\",\"PeriodicalId\":18448,\"journal\":{\"name\":\"Membrane biochemistry\",\"volume\":\"9 2\",\"pages\":\"129-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/09687689009025835\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/09687689009025835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687689009025835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

采用差速离心、十二烷基硫酸钠(SDS:0.125%)处理和密度梯度离心,从猪胃黏膜中分离出高纯度的H, k - atp酶膜组分。sds -凝胶电泳结果显示,最终产物在97 kD处有一个主条带。纯化的H, k - atp酶沉积在28-35%蔗糖阶梯梯度的界面上,显示出140-170 μ mol Pi/ H /mg蛋白的比活性,k -刺激的atp酶活性与mg -刺激的atp酶活性之比为6.5-8.7。ATP的表观Km为0.154 mM, K+的表观Km为0.6 mM。该纯化过程恢复的酶活性与K(+)-离子载体无关。在2.5 mM ATP存在下SDS处理未改变分离酶的动力学性质。在SDS溶解过程中排除ATP使酶活性降低了90%,这表明ATP保护对酶活性的完全恢复至关重要。总之,温和的SDS增溶可用于纯化相对大量的活性H, k - atp酶,使其接近均匀,而不改变酶的动力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDS purification of porcine H,K-ATPase from gastric mucosa.

A highly purified membrane fraction of H,K-ATPase was isolated from hog gastric mucosa by using differential centrifugation, sodium dodecyl sulfate (SDS:0.125%) treatment and density-gradient centrifugation. The final fraction showed a major band at 97 kD by SDS-gel electrophoresis. This purified H,K-ATPase sedimented at the interface of a 28-35% sucrose step gradient and displayed a specific activity of 140-170 mumol Pi/h/mg protein and a ratio of K-stimulated ATPase activity to Mg-stimulated ATPase activity of 6.5-8.7. The apparent Km for ATP was 0.154 mM and the Km for K+ was o.6 mM. The enzymatic activity recovered from this purification procedure was K(+)-ionophore-independent. SDS treatment in the presence of 2.5 mM ATP did not change the kinetic properties of the isolated enzyme. Exclusion of ATP during SDS solubilization diminished the enzymatic activity by 90%, indicating that ATP protection is essential for the full recovery of enzymatic activity. In summary, mild SDS solubilization can be used to purify relatively large quantities of active H,K-ATPase to near homogeneity without altering the enzyme's kinetic properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信