脑电图生物特征识别中的真倒谱

Marcos del Pozo-Baños, C. Travieso-González, J. R. Ticay-Rivas, J. B. Alonso, M. Dutta, Anushikha Singh
{"title":"脑电图生物特征识别中的真倒谱","authors":"Marcos del Pozo-Baños, C. Travieso-González, J. R. Ticay-Rivas, J. B. Alonso, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2015.7346652","DOIUrl":null,"url":null,"abstract":"In a time when personal data circulates constantly between devices and within the cloud, biometric security systems represents one of the most viable security solutions. A relatively new biometric modality based on the individual's Electroencephalogram (EEG) is starting now to gain popularity among researchers. Its relevance relay mainly on its prospects of high security and robustness against intruders and the proliferation of consumer EEG devices. In this work we propose the use of real cepstrums as descriptors of the subject traits within the EEG. When evaluated with each of the 14 conditions of the 100-subjects BCI2000 database, the proposed approach achieved classification accuracies between 86.88% and 94.91% using only the first 5% of the computed cepstral coefficients (13 coefficients).","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real cepstrums on electroencephalogram biometric identification\",\"authors\":\"Marcos del Pozo-Baños, C. Travieso-González, J. R. Ticay-Rivas, J. B. Alonso, M. Dutta, Anushikha Singh\",\"doi\":\"10.1109/IC3.2015.7346652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a time when personal data circulates constantly between devices and within the cloud, biometric security systems represents one of the most viable security solutions. A relatively new biometric modality based on the individual's Electroencephalogram (EEG) is starting now to gain popularity among researchers. Its relevance relay mainly on its prospects of high security and robustness against intruders and the proliferation of consumer EEG devices. In this work we propose the use of real cepstrums as descriptors of the subject traits within the EEG. When evaluated with each of the 14 conditions of the 100-subjects BCI2000 database, the proposed approach achieved classification accuracies between 86.88% and 94.91% using only the first 5% of the computed cepstral coefficients (13 coefficients).\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在个人数据不断在设备之间和云中流动的时代,生物识别安全系统是最可行的安全解决方案之一。一种基于个人脑电图(EEG)的相对较新的生物识别模式现在开始受到研究人员的欢迎。其相关性主要体现在其高安全性和抗入侵鲁棒性的前景以及消费级脑电图设备的扩散。在这项工作中,我们建议使用真实倒谱作为脑电图中受试者特征的描述符。在100受试者BCI2000数据库的14种条件下进行评估时,仅使用计算的倒谱系数(13个系数)的前5%,该方法的分类准确率在86.88% ~ 94.91%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real cepstrums on electroencephalogram biometric identification
In a time when personal data circulates constantly between devices and within the cloud, biometric security systems represents one of the most viable security solutions. A relatively new biometric modality based on the individual's Electroencephalogram (EEG) is starting now to gain popularity among researchers. Its relevance relay mainly on its prospects of high security and robustness against intruders and the proliferation of consumer EEG devices. In this work we propose the use of real cepstrums as descriptors of the subject traits within the EEG. When evaluated with each of the 14 conditions of the 100-subjects BCI2000 database, the proposed approach achieved classification accuracies between 86.88% and 94.91% using only the first 5% of the computed cepstral coefficients (13 coefficients).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信