两排施普林格纤维的不可还原成分,适用于所有经典类型

Mee Seong Im, C. Lai, A. Wilbert
{"title":"两排施普林格纤维的不可还原成分,适用于所有经典类型","authors":"Mee Seong Im, C. Lai, A. Wilbert","doi":"10.1090/proc/15965","DOIUrl":null,"url":null,"abstract":"We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. Given a cup diagram, we explicitly write down all flags contained in the component associated to the cup diagram. This generalizes results by Stroppel--Webster and Fung to all classical types.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Irreducible components of two-row Springer fibers for all classical types\",\"authors\":\"Mee Seong Im, C. Lai, A. Wilbert\",\"doi\":\"10.1090/proc/15965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. Given a cup diagram, we explicitly write down all flags contained in the component associated to the cup diagram. This generalizes results by Stroppel--Webster and Fung to all classical types.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用杯形图给出了所有经典类型的两列Springer光纤的不可约分量的显式描述。杯形图可用于标记两排斯普林格光纤的不可约组分。给定一个杯状图,我们显式地写下与杯状图关联的组件中包含的所有标志。这将Stroppel- Webster和Fung的结果推广到所有经典类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducible components of two-row Springer fibers for all classical types
We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. Given a cup diagram, we explicitly write down all flags contained in the component associated to the cup diagram. This generalizes results by Stroppel--Webster and Fung to all classical types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信