{"title":"随机分数格系统的Wong-Zakai逼近与路径动力学","authors":"Yijun Chen, Xiaohu Wang, Kenan Wu","doi":"10.3934/cpaa.2022059","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the pathwise dynamics of stochastic fractional lattice systems driven by Wong-Zakai type approximation noises. The existence and uniqueness of pullback random attractor are established for the approximate system with a wide class of nonlinear diffusion term. For system with linear multiplicative noise and additive white noise, the upper semicontinuity of random attractors for the corresponding approximate system are also proved when the step size of the approximation approaches zero.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems\",\"authors\":\"Yijun Chen, Xiaohu Wang, Kenan Wu\",\"doi\":\"10.3934/cpaa.2022059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the pathwise dynamics of stochastic fractional lattice systems driven by Wong-Zakai type approximation noises. The existence and uniqueness of pullback random attractor are established for the approximate system with a wide class of nonlinear diffusion term. For system with linear multiplicative noise and additive white noise, the upper semicontinuity of random attractors for the corresponding approximate system are also proved when the step size of the approximation approaches zero.\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems
This paper is concerned with the pathwise dynamics of stochastic fractional lattice systems driven by Wong-Zakai type approximation noises. The existence and uniqueness of pullback random attractor are established for the approximate system with a wide class of nonlinear diffusion term. For system with linear multiplicative noise and additive white noise, the upper semicontinuity of random attractors for the corresponding approximate system are also proved when the step size of the approximation approaches zero.