构形空间方法的共识分析与形成

S. Taghvaei, M. Eghtesad
{"title":"构形空间方法的共识分析与形成","authors":"S. Taghvaei, M. Eghtesad","doi":"10.1109/ICCIAUTOM.2017.8258705","DOIUrl":null,"url":null,"abstract":"Stability analysis of multi-agent dynamical systems has been an active area of research recently. In this paper, a configuration space approach is used to investigate the stability of a multi-agent system with first-order dynamics and continuous or discontinuous aggregating function interconnected through a digraph. This approach is shown to be a more convenient tool in modeling and investigating stability of the system. Describing the common case of a connected swarm graph in the configuration space form, the general mathematical model is proposed and the stability and finite time convergence of such consensus problem is proved through a Lyuponov Function approach. Moreover a novel discontinuous aggregating function is proposed which shows attractive and repulsive behavior without getting infinite value. Asymptotic stability is guaranteed for the model. Simulation results show the validity of the approach.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Configuration space approach to analysis of consensus and formation\",\"authors\":\"S. Taghvaei, M. Eghtesad\",\"doi\":\"10.1109/ICCIAUTOM.2017.8258705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability analysis of multi-agent dynamical systems has been an active area of research recently. In this paper, a configuration space approach is used to investigate the stability of a multi-agent system with first-order dynamics and continuous or discontinuous aggregating function interconnected through a digraph. This approach is shown to be a more convenient tool in modeling and investigating stability of the system. Describing the common case of a connected swarm graph in the configuration space form, the general mathematical model is proposed and the stability and finite time convergence of such consensus problem is proved through a Lyuponov Function approach. Moreover a novel discontinuous aggregating function is proposed which shows attractive and repulsive behavior without getting infinite value. Asymptotic stability is guaranteed for the model. Simulation results show the validity of the approach.\",\"PeriodicalId\":197207,\"journal\":{\"name\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2017.8258705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多智能体动态系统的稳定性分析是近年来研究的一个活跃领域。本文利用组态空间方法研究了一类一阶动态系统的稳定性问题,该系统具有连续或不连续的聚合函数,通过有向图相互连接。该方法是一种比较方便的建模和研究系统稳定性的工具。描述了连通群图在组态空间形式下的一般情况,提出了这种一致性问题的一般数学模型,并利用Lyuponov函数方法证明了这种一致性问题的稳定性和有限时间收敛性。此外,还提出了一种新的不连续聚合函数,该函数具有吸引和排斥的特性,且不会得到无穷大的值。保证了模型的渐近稳定性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Configuration space approach to analysis of consensus and formation
Stability analysis of multi-agent dynamical systems has been an active area of research recently. In this paper, a configuration space approach is used to investigate the stability of a multi-agent system with first-order dynamics and continuous or discontinuous aggregating function interconnected through a digraph. This approach is shown to be a more convenient tool in modeling and investigating stability of the system. Describing the common case of a connected swarm graph in the configuration space form, the general mathematical model is proposed and the stability and finite time convergence of such consensus problem is proved through a Lyuponov Function approach. Moreover a novel discontinuous aggregating function is proposed which shows attractive and repulsive behavior without getting infinite value. Asymptotic stability is guaranteed for the model. Simulation results show the validity of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信