基于嵌套OpenMP的多块CFD数据集三维关键点高效计算

A. Gerndt, Samuel Sarholz, M. Wolter, Dieter an Mey, C. Bischof, T. Kuhlen
{"title":"基于嵌套OpenMP的多块CFD数据集三维关键点高效计算","authors":"A. Gerndt, Samuel Sarholz, M. Wolter, Dieter an Mey, C. Bischof, T. Kuhlen","doi":"10.1145/1188455.1188553","DOIUrl":null,"url":null,"abstract":"Extraction of complex data structures like vector field topologies in large-scale, unsteady flow field datasets for the interactive exploration in virtual environments cannot be carried out without parallelization strategies. We present an approach based on Nested OpenMP to find critical points, which are the essential parts of velocity field topologies. We evaluate our parallelization scheme on several multi-block datasets, and present the results for various thread counts and loop schedules on all parallelization levels. Our experience suggests that upcoming massively multi-threaded processor architectures can be very advantageously for large-scale feature extractions","PeriodicalId":333909,"journal":{"name":"ACM/IEEE SC 2006 Conference (SC'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Nested OpenMP for Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets\",\"authors\":\"A. Gerndt, Samuel Sarholz, M. Wolter, Dieter an Mey, C. Bischof, T. Kuhlen\",\"doi\":\"10.1145/1188455.1188553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of complex data structures like vector field topologies in large-scale, unsteady flow field datasets for the interactive exploration in virtual environments cannot be carried out without parallelization strategies. We present an approach based on Nested OpenMP to find critical points, which are the essential parts of velocity field topologies. We evaluate our parallelization scheme on several multi-block datasets, and present the results for various thread counts and loop schedules on all parallelization levels. Our experience suggests that upcoming massively multi-threaded processor architectures can be very advantageously for large-scale feature extractions\",\"PeriodicalId\":333909,\"journal\":{\"name\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1188455.1188553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2006 Conference (SC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在虚拟环境中,如果没有并行化策略,就无法提取大型非定常流场数据集中的向量场拓扑等复杂数据结构。我们提出了一种基于嵌套OpenMP的方法来寻找临界点,这是速度场拓扑的重要组成部分。我们在几个多块数据集上评估了我们的并行化方案,并给出了在所有并行化级别上不同线程计数和循环调度的结果。我们的经验表明,即将到来的大规模多线程处理器架构对于大规模特征提取非常有利
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nested OpenMP for Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets
Extraction of complex data structures like vector field topologies in large-scale, unsteady flow field datasets for the interactive exploration in virtual environments cannot be carried out without parallelization strategies. We present an approach based on Nested OpenMP to find critical points, which are the essential parts of velocity field topologies. We evaluate our parallelization scheme on several multi-block datasets, and present the results for various thread counts and loop schedules on all parallelization levels. Our experience suggests that upcoming massively multi-threaded processor architectures can be very advantageously for large-scale feature extractions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信