压缩光谱重构的深度低维光谱图像表示

Brayan Monroy, Jorge Bacca, H. Arguello
{"title":"压缩光谱重构的深度低维光谱图像表示","authors":"Brayan Monroy, Jorge Bacca, H. Arguello","doi":"10.1109/mlsp52302.2021.9596541","DOIUrl":null,"url":null,"abstract":"Model-based deep learning techniques are the state-of-the-art in compressive spectral imaging reconstruction. These methods integrate deep neural networks (DNN) as spectral image representation used as prior information in the optimization problem, showing optimal results at the expense of increasing the dimensionality of the non-linear representation, i.e., the number of parameters to be recovered. This paper proposes an autoencoder-based network that guarantees a low-dimensional spectral representation through feature reduction, which can be used as prior in the compressive spectral imaging reconstruction. Additionally, based on the experimental observation that the obtained low dimensional spectral representation preserves the spatial structure of the scene, this work exploits the sparsity in the generated feature space by using the Wavelet basis to reduce even more the dimensionally of the inverse problem. The proposed method shows improvements up to 2 dB against state-of-the-art methods.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"28 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Low-Dimensional Spectral Image Representation for Compressive Spectral Reconstruction\",\"authors\":\"Brayan Monroy, Jorge Bacca, H. Arguello\",\"doi\":\"10.1109/mlsp52302.2021.9596541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based deep learning techniques are the state-of-the-art in compressive spectral imaging reconstruction. These methods integrate deep neural networks (DNN) as spectral image representation used as prior information in the optimization problem, showing optimal results at the expense of increasing the dimensionality of the non-linear representation, i.e., the number of parameters to be recovered. This paper proposes an autoencoder-based network that guarantees a low-dimensional spectral representation through feature reduction, which can be used as prior in the compressive spectral imaging reconstruction. Additionally, based on the experimental observation that the obtained low dimensional spectral representation preserves the spatial structure of the scene, this work exploits the sparsity in the generated feature space by using the Wavelet basis to reduce even more the dimensionally of the inverse problem. The proposed method shows improvements up to 2 dB against state-of-the-art methods.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"28 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于模型的深度学习技术是压缩光谱成像重建的最新技术。这些方法将深度神经网络(DNN)作为光谱图像表示,用作优化问题中的先验信息,以增加非线性表示的维数(即需要恢复的参数数量)为代价显示最优结果。本文提出了一种基于自编码器的网络,该网络通过特征约简保证了低维光谱表示,可用于压缩光谱成像重建。此外,基于实验观察得到的低维谱表示保留了场景的空间结构,本工作利用所生成特征空间的稀疏性,利用小波基进一步降低了反问题的维数。与最先进的方法相比,所提出的方法可提高2db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Low-Dimensional Spectral Image Representation for Compressive Spectral Reconstruction
Model-based deep learning techniques are the state-of-the-art in compressive spectral imaging reconstruction. These methods integrate deep neural networks (DNN) as spectral image representation used as prior information in the optimization problem, showing optimal results at the expense of increasing the dimensionality of the non-linear representation, i.e., the number of parameters to be recovered. This paper proposes an autoencoder-based network that guarantees a low-dimensional spectral representation through feature reduction, which can be used as prior in the compressive spectral imaging reconstruction. Additionally, based on the experimental observation that the obtained low dimensional spectral representation preserves the spatial structure of the scene, this work exploits the sparsity in the generated feature space by using the Wavelet basis to reduce even more the dimensionally of the inverse problem. The proposed method shows improvements up to 2 dB against state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信