材料阻尼对厚圆柱弯曲振动的影响

H. Hamidzadeh, D. Afolabi
{"title":"材料阻尼对厚圆柱弯曲振动的影响","authors":"H. Hamidzadeh, D. Afolabi","doi":"10.1115/imece1997-0541","DOIUrl":null,"url":null,"abstract":"\n Harmonic vibrations of thick visco-elastic, infinitely long, circular cylinders subjected to boundary stresses are investigated. The cylinder is assumed to be homogeneous, isotropic, and linearly visco-elastic. The inelastic behavior of some metallic materials leads to dissipation of energy in the medium. The governing equation of motion is developed using modified theory of elastodynamics. The material damping is allowed using complex elastic moduli for the medium. Frequency responses for radial, tangential and axial displacements, as well as stresses at any location, are formulated using potential functions. The responses are computed for different circumferential and axial wave numbers for a given ratio of thickness to radius of the cylinder. The frequency range is extended to include five normalized resonant frequencies. The resonant frequency and loss factor for each mode are extracted using a circle-fit procedure in conjunction with finite difference analysis. The resonant frequency is deduced by estimating a maximum rate of sweep on the circle-fit and the loss factor is determined using selected data points on both sides of the resonance. Computation is performed to determine the effect of material loss factor on the overall damping effectiveness for the structure. Analysis was conducted by estimating resonant frequencies and modal loss factors for several circumferential and thickness to wavelength numbers.","PeriodicalId":407468,"journal":{"name":"Recent Advances in Solids/Structures and Application of Metallic Materials","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Material Damping on Flexural Vibration of Thick Cylinders\",\"authors\":\"H. Hamidzadeh, D. Afolabi\",\"doi\":\"10.1115/imece1997-0541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Harmonic vibrations of thick visco-elastic, infinitely long, circular cylinders subjected to boundary stresses are investigated. The cylinder is assumed to be homogeneous, isotropic, and linearly visco-elastic. The inelastic behavior of some metallic materials leads to dissipation of energy in the medium. The governing equation of motion is developed using modified theory of elastodynamics. The material damping is allowed using complex elastic moduli for the medium. Frequency responses for radial, tangential and axial displacements, as well as stresses at any location, are formulated using potential functions. The responses are computed for different circumferential and axial wave numbers for a given ratio of thickness to radius of the cylinder. The frequency range is extended to include five normalized resonant frequencies. The resonant frequency and loss factor for each mode are extracted using a circle-fit procedure in conjunction with finite difference analysis. The resonant frequency is deduced by estimating a maximum rate of sweep on the circle-fit and the loss factor is determined using selected data points on both sides of the resonance. Computation is performed to determine the effect of material loss factor on the overall damping effectiveness for the structure. Analysis was conducted by estimating resonant frequencies and modal loss factors for several circumferential and thickness to wavelength numbers.\",\"PeriodicalId\":407468,\"journal\":{\"name\":\"Recent Advances in Solids/Structures and Application of Metallic Materials\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids/Structures and Application of Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids/Structures and Application of Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了厚粘弹性无限长圆柱在边界应力作用下的谐波振动。假设圆柱体是均匀的、各向同性的、线性粘弹性的。某些金属材料的非弹性特性导致了能量在介质中的耗散。利用修正的弹性动力学理论建立了运动控制方程。使用介质的复弹性模量允许材料阻尼。径向、切向和轴向位移的频率响应,以及任何位置的应力,都使用势函数表示。在给定圆柱体厚度与半径的比率下,计算了不同周向波数和轴向波数的响应。频率范围扩展到包括五个归一化谐振频率。利用圆拟合方法结合有限差分分析,提取了各模态的谐振频率和损耗因子。通过估计圆拟合上的最大扫描速率来推导谐振频率,并使用谐振两侧的选定数据点确定损耗因子。计算确定了材料损耗因子对结构整体阻尼效果的影响。通过估计谐振频率和模态损耗因子对几个周向和厚度波长数进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Material Damping on Flexural Vibration of Thick Cylinders
Harmonic vibrations of thick visco-elastic, infinitely long, circular cylinders subjected to boundary stresses are investigated. The cylinder is assumed to be homogeneous, isotropic, and linearly visco-elastic. The inelastic behavior of some metallic materials leads to dissipation of energy in the medium. The governing equation of motion is developed using modified theory of elastodynamics. The material damping is allowed using complex elastic moduli for the medium. Frequency responses for radial, tangential and axial displacements, as well as stresses at any location, are formulated using potential functions. The responses are computed for different circumferential and axial wave numbers for a given ratio of thickness to radius of the cylinder. The frequency range is extended to include five normalized resonant frequencies. The resonant frequency and loss factor for each mode are extracted using a circle-fit procedure in conjunction with finite difference analysis. The resonant frequency is deduced by estimating a maximum rate of sweep on the circle-fit and the loss factor is determined using selected data points on both sides of the resonance. Computation is performed to determine the effect of material loss factor on the overall damping effectiveness for the structure. Analysis was conducted by estimating resonant frequencies and modal loss factors for several circumferential and thickness to wavelength numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信