Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang
{"title":"ZNN在线二次规划应用于机械臂逆运动学的仿真与实验","authors":"Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang","doi":"10.1109/ICIST.2013.6747548","DOIUrl":null,"url":null,"abstract":"Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulations and experiments of ZNN for online quadratic programming applied to manipulator inverse kinematics\",\"authors\":\"Yunong Zhang, Ying Wang, Long Jin, Junwei Chen, Yiwen Yang\",\"doi\":\"10.1109/ICIST.2013.6747548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.\",\"PeriodicalId\":415759,\"journal\":{\"name\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2013.6747548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulations and experiments of ZNN for online quadratic programming applied to manipulator inverse kinematics
Zhang neural network (ZNN), a special class of recurrent neural network (RNN), has recently been introduced for time-varying convex quadratic-programming (QP) problems solving. In this paper, a drift-free robotic criterion is exploited in the form of a quadratic performance index. This repetitive-motion-planning (RMP) scheme can be reformulated into a time-varying quadratic program subject to a linear-equality constraint. As QP real-time solvers, two recurrent neural networks, i.e., Zhang neural network and gradient neural network (GNN), are then developed for the online solution of the time-varying QP problem. Computer simulations performed on a four-link robot manipulator demonstrate the superiority of the ZNN solver, compared to the GNN one. Moreover, robotic experiments conducted on a six degrees-of-freedom (DOF) motor-driven push-rod (MDPR) redundant robot manipulator substantiate the physical realizability and effectiveness of this RMP scheme using the ZNN solver.