基于AM-FM模型的特征提取步态模式分类

Ning Wang, E. Ambikairajah, B. Celler, N. Lovell
{"title":"基于AM-FM模型的特征提取步态模式分类","authors":"Ning Wang, E. Ambikairajah, B. Celler, N. Lovell","doi":"10.1109/BIOCAS.2008.4696865","DOIUrl":null,"url":null,"abstract":"This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction using an AM-FM model for gait pattern classification\",\"authors\":\"Ning Wang, E. Ambikairajah, B. Celler, N. Lovell\",\"doi\":\"10.1109/BIOCAS.2008.4696865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种腰装式三轴加速度计对步态模式的分类。提出了一种基于经验模态分解(EMD)和幅频调制(AM-FM)模型的特征提取技术,用于从加速度测量数据中对步行活动进行分类。基于二阶全极谐振器,得到了一组新颖的特征,包括AM、瞬时频率(IF)和瞬时幅度(IA),代表了行走模式。该系统的后端是一个32混合高斯混合模型(GMM)分类器。在平地上行走、在铺砌的斜坡上行走、在楼梯上行走这五种不同的步态模式下,总体分类错误率为4.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction using an AM-FM model for gait pattern classification
This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信