{"title":"基于AM-FM模型的特征提取步态模式分类","authors":"Ning Wang, E. Ambikairajah, B. Celler, N. Lovell","doi":"10.1109/BIOCAS.2008.4696865","DOIUrl":null,"url":null,"abstract":"This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction using an AM-FM model for gait pattern classification\",\"authors\":\"Ning Wang, E. Ambikairajah, B. Celler, N. Lovell\",\"doi\":\"10.1109/BIOCAS.2008.4696865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature extraction using an AM-FM model for gait pattern classification
This paper describes classification of gait patterns from a waist-mounted triaxial accelerometer. A feature extraction technique using empirical mode decomposition (EMD) and an amplitude/frequency modulation (AM-FM) model is proposed for the classification of walking activities from accelerometry data. A set of novel features, including AM, instantaneous frequency (IF) and instantaneous amplitude (IA), representing the walking patterns were obtained based on a second-order all-pole resonator. The back-end of the system was a 32-mixture Gaussian Mixture Model (GMM) classifier. An overall classification error rate of 4.88% was achieved for the five different human gait patterns referring to walking on flat levels, walking up and down paved ramps and walking up and down stairways.