多字段文档检索的查询性能预测

Haggai Roitman, Y. Mass, Guy Feigenblat, Roee Shraga
{"title":"多字段文档检索的查询性能预测","authors":"Haggai Roitman, Y. Mass, Guy Feigenblat, Roee Shraga","doi":"10.1145/3409256.3409821","DOIUrl":null,"url":null,"abstract":"The goal of the query performance prediction (QPP) task is to estimate retrieval effectiveness in the absence of relevance judgments. We consider a novel task of predicting the performance of multifield document retrieval. In this setting, documents are assumed to consist of several different textual descriptions (fields) on which the query is being evaluated. Overall, we study three predictor types. The first type applies a given basic QPP method directly on the retrieval's outcome. Building on the idea of reference-lists, the second type utilizes several pseudo-effective (PE) reference-lists. Each such list is retrieved by further evaluating the query over a specific (single) document field. The third predictor is built on the assumption that, a high agreement among the single-field PE reference-lists attests to a more effective retrieval. Using three different multifield document retrieval tasks we demonstrate the merits of our extended QPP methods. Specifically, we show the important role that the intrinsic agreement among the single-field PE reference-lists plays in this extended QPP task.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Query Performance Prediction for Multifield Document Retrieval\",\"authors\":\"Haggai Roitman, Y. Mass, Guy Feigenblat, Roee Shraga\",\"doi\":\"10.1145/3409256.3409821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the query performance prediction (QPP) task is to estimate retrieval effectiveness in the absence of relevance judgments. We consider a novel task of predicting the performance of multifield document retrieval. In this setting, documents are assumed to consist of several different textual descriptions (fields) on which the query is being evaluated. Overall, we study three predictor types. The first type applies a given basic QPP method directly on the retrieval's outcome. Building on the idea of reference-lists, the second type utilizes several pseudo-effective (PE) reference-lists. Each such list is retrieved by further evaluating the query over a specific (single) document field. The third predictor is built on the assumption that, a high agreement among the single-field PE reference-lists attests to a more effective retrieval. Using three different multifield document retrieval tasks we demonstrate the merits of our extended QPP methods. Specifically, we show the important role that the intrinsic agreement among the single-field PE reference-lists plays in this extended QPP task.\",\"PeriodicalId\":430907,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409256.3409821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

查询性能预测(QPP)任务的目标是在没有相关性判断的情况下估计检索效率。我们考虑了一个预测多字段文档检索性能的新任务。在此设置中,假定文档由几个不同的文本描述(字段)组成,查询将根据这些文本描述(字段)进行评估。总的来说,我们研究了三种预测因子类型。第一种类型直接对检索结果应用给定的基本QPP方法。第二类基于参考表的思想,利用几个伪有效参考表。通过对特定(单个)文档字段进一步评估查询来检索每个这样的列表。第三个预测器建立在这样的假设之上,即单字段PE参考列表之间的高度一致性证明了更有效的检索。通过使用三个不同的多字段文档检索任务,我们展示了扩展的QPP方法的优点。具体来说,我们展示了单字段PE参考列表之间的内在一致性在扩展的QPP任务中发挥的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query Performance Prediction for Multifield Document Retrieval
The goal of the query performance prediction (QPP) task is to estimate retrieval effectiveness in the absence of relevance judgments. We consider a novel task of predicting the performance of multifield document retrieval. In this setting, documents are assumed to consist of several different textual descriptions (fields) on which the query is being evaluated. Overall, we study three predictor types. The first type applies a given basic QPP method directly on the retrieval's outcome. Building on the idea of reference-lists, the second type utilizes several pseudo-effective (PE) reference-lists. Each such list is retrieved by further evaluating the query over a specific (single) document field. The third predictor is built on the assumption that, a high agreement among the single-field PE reference-lists attests to a more effective retrieval. Using three different multifield document retrieval tasks we demonstrate the merits of our extended QPP methods. Specifically, we show the important role that the intrinsic agreement among the single-field PE reference-lists plays in this extended QPP task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信