{"title":"粘性土中桩的极限侧阻力","authors":"L. Hazzar, M. Karray, M. Bouassida, M. Hussien","doi":"10.1179/dfi.2013.005","DOIUrl":null,"url":null,"abstract":"Abstract The ultimate lateral resistance of piles in cohesive soil is studied using the well-known finite difference code, FLAC2D. The Modified Cam Clay (MCC) constitutive relation is adopted in the analyses to model the cohesive soil behavior, whereas the structural pile model with three degree of freedoms, available in FLAC2D library, is adopted to model the piles. The reliability of Broms's method, still used in the current design practice of piles under lateral loads, is verified. Comparisons between the ultimate lateral resistances of piles and those deduced from the graphs proposed by Broms (1964) are presented in graphs. Different factors thought to affect the lateral resistance of piles in cohesive soil, not adequately considered in Broms's method, such as clay stiffness, pile length, pile diameter and axial load are parametrically studied. A special concern is devoted to elucidate the effects of over-consolidation ratio (OCR) on the ultimate lateral resistance of piles in cohesive soil.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Ultimate Lateral Resistance of Piles in Cohesive Soil\",\"authors\":\"L. Hazzar, M. Karray, M. Bouassida, M. Hussien\",\"doi\":\"10.1179/dfi.2013.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The ultimate lateral resistance of piles in cohesive soil is studied using the well-known finite difference code, FLAC2D. The Modified Cam Clay (MCC) constitutive relation is adopted in the analyses to model the cohesive soil behavior, whereas the structural pile model with three degree of freedoms, available in FLAC2D library, is adopted to model the piles. The reliability of Broms's method, still used in the current design practice of piles under lateral loads, is verified. Comparisons between the ultimate lateral resistances of piles and those deduced from the graphs proposed by Broms (1964) are presented in graphs. Different factors thought to affect the lateral resistance of piles in cohesive soil, not adequately considered in Broms's method, such as clay stiffness, pile length, pile diameter and axial load are parametrically studied. A special concern is devoted to elucidate the effects of over-consolidation ratio (OCR) on the ultimate lateral resistance of piles in cohesive soil.\",\"PeriodicalId\":272645,\"journal\":{\"name\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/dfi.2013.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/dfi.2013.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultimate Lateral Resistance of Piles in Cohesive Soil
Abstract The ultimate lateral resistance of piles in cohesive soil is studied using the well-known finite difference code, FLAC2D. The Modified Cam Clay (MCC) constitutive relation is adopted in the analyses to model the cohesive soil behavior, whereas the structural pile model with three degree of freedoms, available in FLAC2D library, is adopted to model the piles. The reliability of Broms's method, still used in the current design practice of piles under lateral loads, is verified. Comparisons between the ultimate lateral resistances of piles and those deduced from the graphs proposed by Broms (1964) are presented in graphs. Different factors thought to affect the lateral resistance of piles in cohesive soil, not adequately considered in Broms's method, such as clay stiffness, pile length, pile diameter and axial load are parametrically studied. A special concern is devoted to elucidate the effects of over-consolidation ratio (OCR) on the ultimate lateral resistance of piles in cohesive soil.