{"title":"四个向量的深度学习","authors":"P. Baldi, Peter Sadowski, D. Whiteson","doi":"10.1142/9789811234026_0003","DOIUrl":null,"url":null,"abstract":"An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to incorporate physics knowledge into the network architecture.","PeriodicalId":416365,"journal":{"name":"Artificial Intelligence for High Energy Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning from Four Vectors\",\"authors\":\"P. Baldi, Peter Sadowski, D. Whiteson\",\"doi\":\"10.1142/9789811234026_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to incorporate physics knowledge into the network architecture.\",\"PeriodicalId\":416365,\"journal\":{\"name\":\"Artificial Intelligence for High Energy Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence for High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811234026_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence for High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811234026_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An early example of the ability of deep networks to improve the statistical power of data collected in particle physics experiments was the demonstration that such networks operating on lists of particle momenta (four-vectors) could outperform shallow networks using features engineered with domain knowledge. A benchmark case is described, with extensions to parameterized networks. A discussion of data handling and architecture is presented, as well as a description of how to incorporate physics knowledge into the network architecture.