线性微分系统形式不变量的计算算法

A. Hilali, A. Wazner
{"title":"线性微分系统形式不变量的计算算法","authors":"A. Hilali, A. Wazner","doi":"10.1145/32439.32478","DOIUrl":null,"url":null,"abstract":"This paper deals with the system of n linear differential equations (*) y'(x) = A(x)y where A(x) is a matrix with formal series coefficients. A sequence of formal invariants related to (*) is defined. An algorithm which reduces (*) by means of meromorphic transformations to a “super-irreducible” form is given. The computation of these invariants follows directly from this form. This algorithm is implemented in Reduce.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithm for computing formal invariants of linear differential systems\",\"authors\":\"A. Hilali, A. Wazner\",\"doi\":\"10.1145/32439.32478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the system of n linear differential equations (*) y'(x) = A(x)y where A(x) is a matrix with formal series coefficients. A sequence of formal invariants related to (*) is defined. An algorithm which reduces (*) by means of meromorphic transformations to a “super-irreducible” form is given. The computation of these invariants follows directly from this form. This algorithm is implemented in Reduce.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/32439.32478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/32439.32478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了n个线性微分方程组(*)y'(x) = A(x)y,其中A(x)是具有形式级数系数的矩阵。定义了一个与(*)相关的形式不变量序列。给出了一种利用亚纯变换将(*)约化为“超不可约”形式的算法。这些不变量的计算直接从这个形式推导出来。该算法在Reduce中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm for computing formal invariants of linear differential systems
This paper deals with the system of n linear differential equations (*) y'(x) = A(x)y where A(x) is a matrix with formal series coefficients. A sequence of formal invariants related to (*) is defined. An algorithm which reduces (*) by means of meromorphic transformations to a “super-irreducible” form is given. The computation of these invariants follows directly from this form. This algorithm is implemented in Reduce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信