基于fpga的SoC实现神经处理加速器的神经网络仿真模型的硬件转换

M. Pietras
{"title":"基于fpga的SoC实现神经处理加速器的神经网络仿真模型的硬件转换","authors":"M. Pietras","doi":"10.1109/FPL.2014.6927383","DOIUrl":null,"url":null,"abstract":"The transition from a neural network simulation model to its hardware representation is a complex process, which touches computations precision, performance and effective architecture implementation issues. Presented neural processing accelerator involves neural network sectioning, precision reduction and weight coefficients parsing (arrangements) in order to increase efficiency and maximize FPGA hardware resources utilization. Particular attention has been devoted on to ANN conversion methods designed for a system based on neural processing units and related with this process redundant calculations and empty neurons generation. In addition, this paper describes the FPGA-based Neural Processing Accelerator architecture benchmark for real example implementation of a pattern recognition neural network.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hardware conversion of neural networks simulation models for neural processing accelerator implemented as FPGA-based SoC\",\"authors\":\"M. Pietras\",\"doi\":\"10.1109/FPL.2014.6927383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition from a neural network simulation model to its hardware representation is a complex process, which touches computations precision, performance and effective architecture implementation issues. Presented neural processing accelerator involves neural network sectioning, precision reduction and weight coefficients parsing (arrangements) in order to increase efficiency and maximize FPGA hardware resources utilization. Particular attention has been devoted on to ANN conversion methods designed for a system based on neural processing units and related with this process redundant calculations and empty neurons generation. In addition, this paper describes the FPGA-based Neural Processing Accelerator architecture benchmark for real example implementation of a pattern recognition neural network.\",\"PeriodicalId\":172795,\"journal\":{\"name\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 24th International Conference on Field Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2014.6927383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

从神经网络仿真模型到其硬件表示的转换是一个复杂的过程,涉及到计算精度、性能和有效的体系结构实现问题。为了提高效率和最大化FPGA硬件资源利用率,提出的神经处理加速器包括神经网络分割、精度降维和权重系数解析(排列)。特别关注的是为基于神经处理单元的系统设计的神经网络转换方法,并与此过程冗余计算和空神经元生成相关。此外,本文还介绍了基于fpga的神经处理加速器体系结构基准,用于实现模式识别神经网络的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware conversion of neural networks simulation models for neural processing accelerator implemented as FPGA-based SoC
The transition from a neural network simulation model to its hardware representation is a complex process, which touches computations precision, performance and effective architecture implementation issues. Presented neural processing accelerator involves neural network sectioning, precision reduction and weight coefficients parsing (arrangements) in order to increase efficiency and maximize FPGA hardware resources utilization. Particular attention has been devoted on to ANN conversion methods designed for a system based on neural processing units and related with this process redundant calculations and empty neurons generation. In addition, this paper describes the FPGA-based Neural Processing Accelerator architecture benchmark for real example implementation of a pattern recognition neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信