时空分数扩散驱动的期权定价模型:序列表示及应用

Jean-Philippe Aguilar, J. Korbel
{"title":"时空分数扩散驱动的期权定价模型:序列表示及应用","authors":"Jean-Philippe Aguilar, J. Korbel","doi":"10.3390/fractalfract2010015","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications\",\"authors\":\"Jean-Philippe Aguilar, J. Korbel\",\"doi\":\"10.3390/fractalfract2010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract2010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract2010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文主要研究基于时空分数扩散的期权定价模型。我们简要地修正了最近的一些结果,这些结果表明期权价格可以用快速收敛的双级数表示,并将这些结果应用于实际市场的数据。重点研究了基于市场数据的模型参数估计和时空分数期权定价模型的隐含波动率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications
In this paper, we focus on option pricing models based on space-time fractional diffusion. We briefly revise recent results which show that the option price can be represented in the terms of rapidly converging double-series and apply these results to the data from real markets. We focus on estimation of model parameters from the market data and estimation of implied volatility within the space-time fractional option pricing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信