摩擦多体动力学中锥体互补问题的可扩展求解方法

Saibal De, Eduardo Corona, P. Jayakumar, S. Veerapaneni
{"title":"摩擦多体动力学中锥体互补问题的可扩展求解方法","authors":"Saibal De, Eduardo Corona, P. Jayakumar, S. Veerapaneni","doi":"10.1109/HPEC.2019.8916234","DOIUrl":null,"url":null,"abstract":"We present an efficient, hybrid MPI/OpenMP framework for the cone complementarity formulation of large-scale rigid body dynamics problems with frictional contact. Data is partitioned among MPI processes using a Morton encoding in order to promote data locality and minimize communication. We parallelize the state-of-the-art first and second-order solvers for the resulting cone complementarity optimization problems. Our approach is highly scalable, enabling the solution of dense, large-scale multibody problems; a sedimentation simulation involving 256 million particles ($\\sim 324$ million contacts on average) was resolved using 512 cores in less than half-hour per time-step.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scalable Solvers for Cone Complementarity Problems in Frictional Multibody Dynamics\",\"authors\":\"Saibal De, Eduardo Corona, P. Jayakumar, S. Veerapaneni\",\"doi\":\"10.1109/HPEC.2019.8916234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient, hybrid MPI/OpenMP framework for the cone complementarity formulation of large-scale rigid body dynamics problems with frictional contact. Data is partitioned among MPI processes using a Morton encoding in order to promote data locality and minimize communication. We parallelize the state-of-the-art first and second-order solvers for the resulting cone complementarity optimization problems. Our approach is highly scalable, enabling the solution of dense, large-scale multibody problems; a sedimentation simulation involving 256 million particles ($\\\\sim 324$ million contacts on average) was resolved using 512 cores in less than half-hour per time-step.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个高效的混合MPI/OpenMP框架,用于具有摩擦接触的大型刚体动力学问题的锥互补公式。数据在MPI进程之间使用Morton编码进行分区,以提高数据局部性并减少通信。我们将最先进的一阶和二阶求解器并行化以求解所得到的锥互补优化问题。我们的方法具有高度可扩展性,可以解决密集的大规模多体问题;在每个时间步长不到半小时的时间内,使用512个岩心解决了涉及2.56亿个颗粒(平均为3.24亿美元)的沉降模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Solvers for Cone Complementarity Problems in Frictional Multibody Dynamics
We present an efficient, hybrid MPI/OpenMP framework for the cone complementarity formulation of large-scale rigid body dynamics problems with frictional contact. Data is partitioned among MPI processes using a Morton encoding in order to promote data locality and minimize communication. We parallelize the state-of-the-art first and second-order solvers for the resulting cone complementarity optimization problems. Our approach is highly scalable, enabling the solution of dense, large-scale multibody problems; a sedimentation simulation involving 256 million particles ($\sim 324$ million contacts on average) was resolved using 512 cores in less than half-hour per time-step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信