利用深度学习方法检测虚假信息:综述

Pummy Dhiman, Amandeep Kaur, Anupam Bonkra
{"title":"利用深度学习方法检测虚假信息:综述","authors":"Pummy Dhiman, Amandeep Kaur, Anupam Bonkra","doi":"10.1109/AISC56616.2023.10085519","DOIUrl":null,"url":null,"abstract":"Fake content has always existed, even before the internet was founded. Because social media is free to use and accessible, a great deal of information is shared on these sites. These platforms play a significant role in the dissemination of information, whether accurate or false. The unregulated proliferation of fake information creation and dissemination that we've seen in recent years poses a constant threat to democracy. Fake content articles have the power to persuade individuals, leaving them perplexed. Deep learning techniques are extremely useful for detecting fake information. This paper analyses multiple DL techniques and datasets used by different researchers for analysis that aids in the detection of bogus information.","PeriodicalId":408520,"journal":{"name":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake Information Detection Using Deep Learning Methods: A Survey\",\"authors\":\"Pummy Dhiman, Amandeep Kaur, Anupam Bonkra\",\"doi\":\"10.1109/AISC56616.2023.10085519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake content has always existed, even before the internet was founded. Because social media is free to use and accessible, a great deal of information is shared on these sites. These platforms play a significant role in the dissemination of information, whether accurate or false. The unregulated proliferation of fake information creation and dissemination that we've seen in recent years poses a constant threat to democracy. Fake content articles have the power to persuade individuals, leaving them perplexed. Deep learning techniques are extremely useful for detecting fake information. This paper analyses multiple DL techniques and datasets used by different researchers for analysis that aids in the detection of bogus information.\",\"PeriodicalId\":408520,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISC56616.2023.10085519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISC56616.2023.10085519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚假内容一直存在,甚至在互联网诞生之前就存在了。由于社交媒体可以免费使用和访问,大量信息在这些网站上共享。这些平台在传播信息方面发挥着重要作用,无论信息是准确的还是虚假的。近年来,我们所看到的虚假信息创造和传播的不受监管的扩散对民主构成了持续的威胁。虚假内容文章具有说服个人的能力,让他们感到困惑。深度学习技术在检测虚假信息方面非常有用。本文分析了不同研究人员用于分析的多种深度学习技术和数据集,以帮助检测虚假信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fake Information Detection Using Deep Learning Methods: A Survey
Fake content has always existed, even before the internet was founded. Because social media is free to use and accessible, a great deal of information is shared on these sites. These platforms play a significant role in the dissemination of information, whether accurate or false. The unregulated proliferation of fake information creation and dissemination that we've seen in recent years poses a constant threat to democracy. Fake content articles have the power to persuade individuals, leaving them perplexed. Deep learning techniques are extremely useful for detecting fake information. This paper analyses multiple DL techniques and datasets used by different researchers for analysis that aids in the detection of bogus information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信