基于视觉里程计的改进姿态估计

Rohan More, Rahul Kottath, R. Jegadeeshwaran, Vipan Kumar, V. Karar, Shashi Poddar
{"title":"基于视觉里程计的改进姿态估计","authors":"Rohan More, Rahul Kottath, R. Jegadeeshwaran, Vipan Kumar, V. Karar, Shashi Poddar","doi":"10.1109/SSPS.2017.8071595","DOIUrl":null,"url":null,"abstract":"Visual odometry is a well-known technique that is used to compute the rotation and translation of any moving vehicle with the help of camera mounted over it. This task of vision-based navigation is used for different applications such as autonomous navigation, motion tracking and obstacle detection, etc. This paper illustrates an approach for estimating vehicle motion by detecting and matching scale invariant SURF feature over consequent image frames. These set of matched feature are passed through an outlier removal and inlier selection methodology sequentially in order to remove the inconsistent features. Additionally, the proposed scheme incorporates the bucketing technique to ensure spatial distribution of feature in the overall image space. The proposed scheme of inlier selection-cum-outlier rejection has been applied on the KITTI dataset available online and is found to work satisfactorily as compared to the individual outlier rejection or inlier selection mechanism.","PeriodicalId":382353,"journal":{"name":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved pose estimation by inlier refinement for visual odometry\",\"authors\":\"Rohan More, Rahul Kottath, R. Jegadeeshwaran, Vipan Kumar, V. Karar, Shashi Poddar\",\"doi\":\"10.1109/SSPS.2017.8071595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual odometry is a well-known technique that is used to compute the rotation and translation of any moving vehicle with the help of camera mounted over it. This task of vision-based navigation is used for different applications such as autonomous navigation, motion tracking and obstacle detection, etc. This paper illustrates an approach for estimating vehicle motion by detecting and matching scale invariant SURF feature over consequent image frames. These set of matched feature are passed through an outlier removal and inlier selection methodology sequentially in order to remove the inconsistent features. Additionally, the proposed scheme incorporates the bucketing technique to ensure spatial distribution of feature in the overall image space. The proposed scheme of inlier selection-cum-outlier rejection has been applied on the KITTI dataset available online and is found to work satisfactorily as compared to the individual outlier rejection or inlier selection mechanism.\",\"PeriodicalId\":382353,\"journal\":{\"name\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPS.2017.8071595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPS.2017.8071595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

视觉里程计是一种众所周知的技术,用于计算任何移动车辆的旋转和平移,帮助安装在它上面的相机。这种基于视觉的导航任务被用于不同的应用,如自主导航、运动跟踪和障碍物检测等。本文阐述了一种通过在后续图像帧上检测和匹配尺度不变SURF特征来估计车辆运动的方法。这些匹配的特征集依次通过离群值去除和初始值选择方法来去除不一致的特征。此外,该方案还采用了bucket技术,以保证特征在整个图像空间中的空间分布。该方法已在KITTI在线数据集上得到应用,结果表明,与单个异常值拒绝或初始值选择机制相比,该方法的效果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved pose estimation by inlier refinement for visual odometry
Visual odometry is a well-known technique that is used to compute the rotation and translation of any moving vehicle with the help of camera mounted over it. This task of vision-based navigation is used for different applications such as autonomous navigation, motion tracking and obstacle detection, etc. This paper illustrates an approach for estimating vehicle motion by detecting and matching scale invariant SURF feature over consequent image frames. These set of matched feature are passed through an outlier removal and inlier selection methodology sequentially in order to remove the inconsistent features. Additionally, the proposed scheme incorporates the bucketing technique to ensure spatial distribution of feature in the overall image space. The proposed scheme of inlier selection-cum-outlier rejection has been applied on the KITTI dataset available online and is found to work satisfactorily as compared to the individual outlier rejection or inlier selection mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信