随机Sturmian字的递归函数

P. Rotondo, B. Vallée
{"title":"随机Sturmian字的递归函数","authors":"P. Rotondo, B. Vallée","doi":"10.1137/1.9781611974775.10","DOIUrl":null,"url":null,"abstract":"This paper describes the probabilistic behaviour of a random Sturmian word. It performs the probabilistic analysis of the recurrence function which can be viewed as a waiting time to discover all the factors of length $n$ of the Sturmian word. This parameter is central to combinatorics of words. Having fixed a possible length $n$ for the factors, we let $\\alpha$ to be drawn uniformly from the unit interval $[0,1]$, thus defining a random Sturmian word of slope $\\alpha$. Thus the waiting time for these factors becomes a random variable, for which we study the limit distribution and the limit density.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The recurrence function of a random Sturmian word\",\"authors\":\"P. Rotondo, B. Vallée\",\"doi\":\"10.1137/1.9781611974775.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the probabilistic behaviour of a random Sturmian word. It performs the probabilistic analysis of the recurrence function which can be viewed as a waiting time to discover all the factors of length $n$ of the Sturmian word. This parameter is central to combinatorics of words. Having fixed a possible length $n$ for the factors, we let $\\\\alpha$ to be drawn uniformly from the unit interval $[0,1]$, thus defining a random Sturmian word of slope $\\\\alpha$. Thus the waiting time for these factors becomes a random variable, for which we study the limit distribution and the limit density.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974775.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一个随机Sturmian词的概率行为。它对递归函数进行概率分析,递归函数可以看作是发现Sturmian单词长度为$n$的所有因子的等待时间。这个参数是单词组合的核心。在确定了因子的可能长度$n$后,我们让$\alpha$从单位区间$[0,1]$中均匀抽取,从而定义了斜率$\alpha$的随机Sturmian字。因此,这些因素的等待时间成为一个随机变量,我们研究了其极限分布和极限密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The recurrence function of a random Sturmian word
This paper describes the probabilistic behaviour of a random Sturmian word. It performs the probabilistic analysis of the recurrence function which can be viewed as a waiting time to discover all the factors of length $n$ of the Sturmian word. This parameter is central to combinatorics of words. Having fixed a possible length $n$ for the factors, we let $\alpha$ to be drawn uniformly from the unit interval $[0,1]$, thus defining a random Sturmian word of slope $\alpha$. Thus the waiting time for these factors becomes a random variable, for which we study the limit distribution and the limit density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信