约束系统最小坐标集动力学的投影延拓

Ping Zhou, A. Zanoni, P. Masarati
{"title":"约束系统最小坐标集动力学的投影延拓","authors":"Ping Zhou, A. Zanoni, P. Masarati","doi":"10.3311/eccomasmbd2021-166","DOIUrl":null,"url":null,"abstract":"The formulation of constrained system dynamics using coordinate projection onto a subspace locally tangent to the constraint manifold is revisited using the QR factorization of the constraint Jacobian matrix to extract a suitable subspace, and integrating the evolution of the QR factorization along with that of the constraint Jacobian matrix, as the solution evolves. A true continuation algorithm is thus proposed for the subspace of independent coordinates, which does not visibly affect the quality of the solution, but avoids the artificial algorithmic discontinuities in the generalized velocities that would result from arbitrary reparameterization of the coordinate set. This property is exemplified by solving simple multi-degree-of-freedom problems with and without the proposed continuation.","PeriodicalId":431921,"journal":{"name":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Projection Continuation for Minimal Coordinate Set Dynamics of Constrained Systems\",\"authors\":\"Ping Zhou, A. Zanoni, P. Masarati\",\"doi\":\"10.3311/eccomasmbd2021-166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formulation of constrained system dynamics using coordinate projection onto a subspace locally tangent to the constraint manifold is revisited using the QR factorization of the constraint Jacobian matrix to extract a suitable subspace, and integrating the evolution of the QR factorization along with that of the constraint Jacobian matrix, as the solution evolves. A true continuation algorithm is thus proposed for the subspace of independent coordinates, which does not visibly affect the quality of the solution, but avoids the artificial algorithmic discontinuities in the generalized velocities that would result from arbitrary reparameterization of the coordinate set. This property is exemplified by solving simple multi-degree-of-freedom problems with and without the proposed continuation.\",\"PeriodicalId\":431921,\"journal\":{\"name\":\"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/eccomasmbd2021-166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/eccomasmbd2021-166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用约束雅可比矩阵的QR分解来提取合适的子空间,并随着解的演化将QR分解与约束雅可比矩阵的演化结合起来,重新研究了约束系统动力学在局部与约束流形相切的子空间上的坐标投影公式。针对独立坐标的子空间,提出了一种真正的连续算法,该算法不会明显影响解的质量,但避免了由于坐标集的任意重参数化而导致的广义速度的人为算法不连续。通过求解简单的多自由度问题来证明这一性质,该问题有或没有所提出的延拓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection Continuation for Minimal Coordinate Set Dynamics of Constrained Systems
The formulation of constrained system dynamics using coordinate projection onto a subspace locally tangent to the constraint manifold is revisited using the QR factorization of the constraint Jacobian matrix to extract a suitable subspace, and integrating the evolution of the QR factorization along with that of the constraint Jacobian matrix, as the solution evolves. A true continuation algorithm is thus proposed for the subspace of independent coordinates, which does not visibly affect the quality of the solution, but avoids the artificial algorithmic discontinuities in the generalized velocities that would result from arbitrary reparameterization of the coordinate set. This property is exemplified by solving simple multi-degree-of-freedom problems with and without the proposed continuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信