Sri Ayu Rosiva Srg, M. Zarlis, Wanayumini Wanayumini
{"title":"灰度共生(GLCM)和k -最近邻(K-Nearest Neighbor)","authors":"Sri Ayu Rosiva Srg, M. Zarlis, Wanayumini Wanayumini","doi":"10.30812/matrik.v21i2.1572","DOIUrl":null,"url":null,"abstract":"Banyaknya jenis tanaman yang bentuknya hampir mirip sangat menyulitkan masyarakat Indonesia dalam melakukan klasifikasi ataupun pengelompokkan dan banyaknya penelitian sistem klasifikasi daun tanaman yang menghasilkan akurasi yang rendah tidak mencapai 90%. Maka diperlukan sistem klasifikasi yang lebih akurat dan performance yang menghasilkan tingkat kesalahan kecil. Berdasarkan masalah tersebut maka tujuan penelitian ini akan membangun sistem klasifikasi jenis tanaman berdasarkan citra daun dengan sistem yang akurat dan tingkat kesalahan yang minimal kecil sehinga dapat digunakan untuk mempermudah masyarakat dalam melakukan pengenalan ataupun pengelompokkan jenis tanaman. Metode yang digunakan dalam penelitian ini adalah GLCM (Gray Level Co-Occurence) untuk ekstraksi ciri dan K-NN (K-Nearest Neighbor) untuk klasifikasi. Tahapan penelitian terdiri dari pre-processing, ektraksi ciri, dan klasifikasi. Tahap pre-processing melakukan resize citra RGB lalu dikonversi ke Grayscale. Tahap ektraksi ciri menggunakan metode GLCM diambil ciri dari empat fitur entrophy, homogeneity, energy dan contras dengan sudut 0o, 45o, 90o dan 135o. Tahap klasifikasi dengan K-NN. Sistem klasifikai dengan K-NN memperlihatkan bahwa akurasi terbaik dengan penggunaan nilai ketetanggan k =1 mencapai 98%.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor)\",\"authors\":\"Sri Ayu Rosiva Srg, M. Zarlis, Wanayumini Wanayumini\",\"doi\":\"10.30812/matrik.v21i2.1572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Banyaknya jenis tanaman yang bentuknya hampir mirip sangat menyulitkan masyarakat Indonesia dalam melakukan klasifikasi ataupun pengelompokkan dan banyaknya penelitian sistem klasifikasi daun tanaman yang menghasilkan akurasi yang rendah tidak mencapai 90%. Maka diperlukan sistem klasifikasi yang lebih akurat dan performance yang menghasilkan tingkat kesalahan kecil. Berdasarkan masalah tersebut maka tujuan penelitian ini akan membangun sistem klasifikasi jenis tanaman berdasarkan citra daun dengan sistem yang akurat dan tingkat kesalahan yang minimal kecil sehinga dapat digunakan untuk mempermudah masyarakat dalam melakukan pengenalan ataupun pengelompokkan jenis tanaman. Metode yang digunakan dalam penelitian ini adalah GLCM (Gray Level Co-Occurence) untuk ekstraksi ciri dan K-NN (K-Nearest Neighbor) untuk klasifikasi. Tahapan penelitian terdiri dari pre-processing, ektraksi ciri, dan klasifikasi. Tahap pre-processing melakukan resize citra RGB lalu dikonversi ke Grayscale. Tahap ektraksi ciri menggunakan metode GLCM diambil ciri dari empat fitur entrophy, homogeneity, energy dan contras dengan sudut 0o, 45o, 90o dan 135o. Tahap klasifikasi dengan K-NN. Sistem klasifikai dengan K-NN memperlihatkan bahwa akurasi terbaik dengan penggunaan nilai ketetanggan k =1 mencapai 98%.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v21i2.1572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i2.1572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor)
Banyaknya jenis tanaman yang bentuknya hampir mirip sangat menyulitkan masyarakat Indonesia dalam melakukan klasifikasi ataupun pengelompokkan dan banyaknya penelitian sistem klasifikasi daun tanaman yang menghasilkan akurasi yang rendah tidak mencapai 90%. Maka diperlukan sistem klasifikasi yang lebih akurat dan performance yang menghasilkan tingkat kesalahan kecil. Berdasarkan masalah tersebut maka tujuan penelitian ini akan membangun sistem klasifikasi jenis tanaman berdasarkan citra daun dengan sistem yang akurat dan tingkat kesalahan yang minimal kecil sehinga dapat digunakan untuk mempermudah masyarakat dalam melakukan pengenalan ataupun pengelompokkan jenis tanaman. Metode yang digunakan dalam penelitian ini adalah GLCM (Gray Level Co-Occurence) untuk ekstraksi ciri dan K-NN (K-Nearest Neighbor) untuk klasifikasi. Tahapan penelitian terdiri dari pre-processing, ektraksi ciri, dan klasifikasi. Tahap pre-processing melakukan resize citra RGB lalu dikonversi ke Grayscale. Tahap ektraksi ciri menggunakan metode GLCM diambil ciri dari empat fitur entrophy, homogeneity, energy dan contras dengan sudut 0o, 45o, 90o dan 135o. Tahap klasifikasi dengan K-NN. Sistem klasifikai dengan K-NN memperlihatkan bahwa akurasi terbaik dengan penggunaan nilai ketetanggan k =1 mencapai 98%.