一种引导数据收集以最小化输入不确定性的两阶段算法

Drupad Parmar, Lucy E. Morgan, A. Titman, Richard Williams, S. Sanchez
{"title":"一种引导数据收集以最小化输入不确定性的两阶段算法","authors":"Drupad Parmar, Lucy E. Morgan, A. Titman, Richard Williams, S. Sanchez","doi":"10.36819/SW21.013","DOIUrl":null,"url":null,"abstract":"In stochastic simulation the input models used to drive the simulation are often estimated by collecting data from the real-world system. This can be an expensive and time consuming process so it would therefore be useful to have some guidance on how much data to collect for each input model. Estimating the input models via data introduces a source of variance in the simulation response known as input uncertainty. In this paper we propose a two stage algorithm that guides the initial data collection procedure for a simulation experiment that has a fixed data collection budget, with the objective of minimising input uncertainty in the simulation response. Results show that the algorithm is able to allocate data in a close to optimal manner and compared to two alternative data collection approaches returns a reduced level of input uncertainty.","PeriodicalId":149666,"journal":{"name":"Proceedings of SW21 The OR Society Simulation Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two Stage Algorithm for Guiding Data Collection Towards Minimising Input Uncertainty\",\"authors\":\"Drupad Parmar, Lucy E. Morgan, A. Titman, Richard Williams, S. Sanchez\",\"doi\":\"10.36819/SW21.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In stochastic simulation the input models used to drive the simulation are often estimated by collecting data from the real-world system. This can be an expensive and time consuming process so it would therefore be useful to have some guidance on how much data to collect for each input model. Estimating the input models via data introduces a source of variance in the simulation response known as input uncertainty. In this paper we propose a two stage algorithm that guides the initial data collection procedure for a simulation experiment that has a fixed data collection budget, with the objective of minimising input uncertainty in the simulation response. Results show that the algorithm is able to allocate data in a close to optimal manner and compared to two alternative data collection approaches returns a reduced level of input uncertainty.\",\"PeriodicalId\":149666,\"journal\":{\"name\":\"Proceedings of SW21 The OR Society Simulation Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SW21 The OR Society Simulation Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36819/SW21.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SW21 The OR Society Simulation Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36819/SW21.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在随机仿真中,用于驱动仿真的输入模型通常是通过从真实系统中收集数据来估计的。这可能是一个昂贵且耗时的过程,因此有一些关于为每个输入模型收集多少数据的指导是有用的。通过数据估计输入模型会在模拟响应中引入一个方差源,即输入不确定性。在本文中,我们提出了一种两阶段算法,该算法指导具有固定数据收集预算的模拟实验的初始数据收集过程,其目标是最小化模拟响应中的输入不确定性。结果表明,该算法能够以接近最优的方式分配数据,并且与两种可选的数据收集方法相比,返回的输入不确定性水平降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two Stage Algorithm for Guiding Data Collection Towards Minimising Input Uncertainty
In stochastic simulation the input models used to drive the simulation are often estimated by collecting data from the real-world system. This can be an expensive and time consuming process so it would therefore be useful to have some guidance on how much data to collect for each input model. Estimating the input models via data introduces a source of variance in the simulation response known as input uncertainty. In this paper we propose a two stage algorithm that guides the initial data collection procedure for a simulation experiment that has a fixed data collection budget, with the objective of minimising input uncertainty in the simulation response. Results show that the algorithm is able to allocate data in a close to optimal manner and compared to two alternative data collection approaches returns a reduced level of input uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信