面向服务器应用程序的部署时动态分析

Luís Pina, Cristian Cadar
{"title":"面向服务器应用程序的部署时动态分析","authors":"Luís Pina, Cristian Cadar","doi":"10.1145/2823363.2823372","DOIUrl":null,"url":null,"abstract":"Bug-finding tools based on dynamic analysis (DA), such as Valgrind or the compiler sanitizers provided by Clang and GCC, have become ubiquitous during software development. These analyses are precise but incur a large performance overhead (often several times slower than native execution), which makes them prohibitively expensive to use in production. In this work, we investigate the exciting possibility of deploying such dynamic analyses in production code, using a multi-version execution approach.","PeriodicalId":256833,"journal":{"name":"Proceedings of the 13th International Workshop on Dynamic Analysis","volume":"28 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards deployment-time dynamic analysis of server applications\",\"authors\":\"Luís Pina, Cristian Cadar\",\"doi\":\"10.1145/2823363.2823372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bug-finding tools based on dynamic analysis (DA), such as Valgrind or the compiler sanitizers provided by Clang and GCC, have become ubiquitous during software development. These analyses are precise but incur a large performance overhead (often several times slower than native execution), which makes them prohibitively expensive to use in production. In this work, we investigate the exciting possibility of deploying such dynamic analyses in production code, using a multi-version execution approach.\",\"PeriodicalId\":256833,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Dynamic Analysis\",\"volume\":\"28 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Dynamic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2823363.2823372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Dynamic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2823363.2823372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于动态分析(DA)的bug查找工具,如Valgrind或Clang和GCC提供的编译器杀毒器,在软件开发过程中已经变得无处不在。这些分析是精确的,但会产生很大的性能开销(通常比本机执行慢几倍),这使得它们在生产中使用的成本非常高。在这项工作中,我们研究了使用多版本执行方法在生产代码中部署这种动态分析的令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards deployment-time dynamic analysis of server applications
Bug-finding tools based on dynamic analysis (DA), such as Valgrind or the compiler sanitizers provided by Clang and GCC, have become ubiquitous during software development. These analyses are precise but incur a large performance overhead (often several times slower than native execution), which makes them prohibitively expensive to use in production. In this work, we investigate the exciting possibility of deploying such dynamic analyses in production code, using a multi-version execution approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信