核子类支持向量描述用于人脸和人体动作识别

V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"核子类支持向量描述用于人脸和人体动作识别","authors":"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/SPLIM.2016.7528409","DOIUrl":null,"url":null,"abstract":"In this paper, we present the Kernel Subclass Support Vector Data Description classifier. We focus on face recognition and human action recognition applications, where we argue that sub-classes are formed within the training class. We modify the standard SVDD optimization problem, so that it exploits subclass information in its optimization process. We extend the proposed method to work in feature spaces of arbitrary dimensionality. We evaluate the proposed method in publicly available face recognition and human action recognition datasets. Experimental results have shown that increased performance can be obtained by employing the proposed method.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Kernel subclass support vector description for face and human action recognition\",\"authors\":\"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas\",\"doi\":\"10.1109/SPLIM.2016.7528409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the Kernel Subclass Support Vector Data Description classifier. We focus on face recognition and human action recognition applications, where we argue that sub-classes are formed within the training class. We modify the standard SVDD optimization problem, so that it exploits subclass information in its optimization process. We extend the proposed method to work in feature spaces of arbitrary dimensionality. We evaluate the proposed method in publicly available face recognition and human action recognition datasets. Experimental results have shown that increased performance can be obtained by employing the proposed method.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了核子类支持向量数据描述分类器。我们专注于人脸识别和人类动作识别应用,我们认为子类是在训练类中形成的。对标准SVDD优化问题进行了改进,使其在优化过程中利用了子类信息。我们将该方法扩展到任意维的特征空间。我们在公开可用的人脸识别和人类动作识别数据集中评估了所提出的方法。实验结果表明,采用该方法可以获得更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel subclass support vector description for face and human action recognition
In this paper, we present the Kernel Subclass Support Vector Data Description classifier. We focus on face recognition and human action recognition applications, where we argue that sub-classes are formed within the training class. We modify the standard SVDD optimization problem, so that it exploits subclass information in its optimization process. We extend the proposed method to work in feature spaces of arbitrary dimensionality. We evaluate the proposed method in publicly available face recognition and human action recognition datasets. Experimental results have shown that increased performance can be obtained by employing the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信