{"title":"WCET分析的符号状态遍历","authors":"Stephan Wilhelm, Björn Wachter","doi":"10.1145/1629335.1629354","DOIUrl":null,"url":null,"abstract":"Static worst-case execution time analysis of real-time tasks is based on abstract models that capture the timing behavior of the processor on which the tasks run. For complex processors, task-level execution time bounds are obtained by a state exploration which involves the abstract model and the program. Partial state space exploration is not sound. A full exploration can become too expensive. We present a novel symbolic method for WCET analysis based on abstract pipeline models which produces sound results and is scalable in terms of the considered hardware states.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Symbolic state traversal for WCET analysis\",\"authors\":\"Stephan Wilhelm, Björn Wachter\",\"doi\":\"10.1145/1629335.1629354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static worst-case execution time analysis of real-time tasks is based on abstract models that capture the timing behavior of the processor on which the tasks run. For complex processors, task-level execution time bounds are obtained by a state exploration which involves the abstract model and the program. Partial state space exploration is not sound. A full exploration can become too expensive. We present a novel symbolic method for WCET analysis based on abstract pipeline models which produces sound results and is scalable in terms of the considered hardware states.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629335.1629354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629335.1629354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Static worst-case execution time analysis of real-time tasks is based on abstract models that capture the timing behavior of the processor on which the tasks run. For complex processors, task-level execution time bounds are obtained by a state exploration which involves the abstract model and the program. Partial state space exploration is not sound. A full exploration can become too expensive. We present a novel symbolic method for WCET analysis based on abstract pipeline models which produces sound results and is scalable in terms of the considered hardware states.