{"title":"贝叶斯混合参数和非参数密度估计:一个错误规范问题","authors":"H. Lopes, Ronaldo Dias","doi":"10.12660/BRE.V31N12011.4134","DOIUrl":null,"url":null,"abstract":"In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"86 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem\",\"authors\":\"H. Lopes, Ronaldo Dias\",\"doi\":\"10.12660/BRE.V31N12011.4134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.\",\"PeriodicalId\":332423,\"journal\":{\"name\":\"Brazilian Review of Econometrics\",\"volume\":\"86 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Review of Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12660/BRE.V31N12011.4134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V31N12011.4134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem
In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.