贝叶斯混合参数和非参数密度估计:一个错误规范问题

H. Lopes, Ronaldo Dias
{"title":"贝叶斯混合参数和非参数密度估计:一个错误规范问题","authors":"H. Lopes, Ronaldo Dias","doi":"10.12660/BRE.V31N12011.4134","DOIUrl":null,"url":null,"abstract":"In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"86 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem\",\"authors\":\"H. Lopes, Ronaldo Dias\",\"doi\":\"10.12660/BRE.V31N12011.4134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.\",\"PeriodicalId\":332423,\"journal\":{\"name\":\"Brazilian Review of Econometrics\",\"volume\":\"86 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Review of Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12660/BRE.V31N12011.4134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V31N12011.4134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了模型误规范对概率密度函数估计的影响。我们使用参数密度估计和非参数密度估计的混合。前者可以用任何合适的参数概率密度函数来建模,包括混合参数模型。后者由已知的b样条估计给出。该方法还处理了由于采集的数据高度结构化,难以提出含有大量混合成分的参数化模型的情况。然后,非参数部分将有助于假设一个适当的模型。此外,为了减少获得高维数据的非参数密度的计算成本,可以将密度的参数混合作为数据集建模的起点。我们的过程是使用非贝叶斯方法的EM-type算法和贝叶斯观点下的MCMCalgorithm来计算的。仿真和实际数据分析表明,该方法对非结构化数据集也有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem
In this paper we study the effect of model misspecifications for probabilitydensity function estimation. We use a mixture of a parametric and nonparametricdensity estimation. The former can be modeled by any suitable parametricprobability density function, including mixture of parametric models. The latteris given by the known B-spline estimation. The procedure also deals withthe situation when a highly structured data are collected so that it is difficultto propose a parametric model with a large number of mixture components.Then a nonparametric part would help to postulate an appropriate model. Inaddition, in order to reduce the computational cost of getting a nonparametricdensity for high dimensional data a parametric mixture of densities could beused as the starting point for modeling such dataset. Our procedure is computedby using EM-type algorithm for a non-Bayesian approach and MCMCalgorithm under a Bayesian point of view. Simulations and real data analysisshow that our proposed procedure have performed quite well even for nonstructured datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信