短寿命动态系统的离散自适应滤波器

R. Patton, A. Killen
{"title":"短寿命动态系统的离散自适应滤波器","authors":"R. Patton, A. Killen","doi":"10.1109/SSST.1993.522795","DOIUrl":null,"url":null,"abstract":"Reliable and easily implemented discrete adaptive filters for short-lived systems are identified. Three different filtering techniques and a lightly damped dynamic system are used to illustrate boundaries specified by the convergence criterion. The filtering techniques in this study are the modified extended Kalman filter, the decoupled Kalman filter, and a pseudolinear regression filter. The extended Kalman filter is shown to converge once it identifies the appropriate decoupling of states and parameters. The decoupled Kalman filter provides a much cleaner convergence but has the standard computational burden of the Kalman filter as well as possible convergence problems. The pseudolinear regression algorithm provides excellent convergence with a much more computationally compatible and time-sensitive algorithm.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete adaptive filters for short-lived dynamic systems\",\"authors\":\"R. Patton, A. Killen\",\"doi\":\"10.1109/SSST.1993.522795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and easily implemented discrete adaptive filters for short-lived systems are identified. Three different filtering techniques and a lightly damped dynamic system are used to illustrate boundaries specified by the convergence criterion. The filtering techniques in this study are the modified extended Kalman filter, the decoupled Kalman filter, and a pseudolinear regression filter. The extended Kalman filter is shown to converge once it identifies the appropriate decoupling of states and parameters. The decoupled Kalman filter provides a much cleaner convergence but has the standard computational burden of the Kalman filter as well as possible convergence problems. The pseudolinear regression algorithm provides excellent convergence with a much more computationally compatible and time-sensitive algorithm.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对短寿命系统,确定了可靠且易于实现的离散自适应滤波器。用三种不同的滤波技术和一个轻阻尼动态系统来说明收敛准则所规定的边界。本文研究的滤波技术包括改进的扩展卡尔曼滤波、解耦卡尔曼滤波和伪线性回归滤波。扩展卡尔曼滤波器在确定适当的状态和参数解耦后收敛。解耦卡尔曼滤波器提供了一个更清晰的收敛,但具有卡尔曼滤波器的标准计算负担以及可能的收敛问题。伪线性回归算法具有更好的计算兼容性和时间敏感性,具有很好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete adaptive filters for short-lived dynamic systems
Reliable and easily implemented discrete adaptive filters for short-lived systems are identified. Three different filtering techniques and a lightly damped dynamic system are used to illustrate boundaries specified by the convergence criterion. The filtering techniques in this study are the modified extended Kalman filter, the decoupled Kalman filter, and a pseudolinear regression filter. The extended Kalman filter is shown to converge once it identifies the appropriate decoupling of states and parameters. The decoupled Kalman filter provides a much cleaner convergence but has the standard computational burden of the Kalman filter as well as possible convergence problems. The pseudolinear regression algorithm provides excellent convergence with a much more computationally compatible and time-sensitive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信