基于时空融合卷积神经网络的模拟驾驶行为识别

Yaocong Hu, MingQi Lu, Xiaobo Lu
{"title":"基于时空融合卷积神经网络的模拟驾驶行为识别","authors":"Yaocong Hu, MingQi Lu, Xiaobo Lu","doi":"10.1109/ICARCV.2018.8581201","DOIUrl":null,"url":null,"abstract":"Abnormal driving behaviour is one of the leading cause of terrible traffic accidents endangering human life. Therefore, study on driving behaviour surveillance has become essential to traffic security and public management. In this paper, we conduct this promising research and employ a two stream CNN framework for video-based driving behaviour recognition, in which spatial stream CNN captures appearance information from still frames, whilst temporal stream CNN captures motion information with pre-computed optical flow displacement between a few adjacent video frames. We investigate different spatial-temporal fusion strategies to combine the intra frame static clues and inter frame dynamic clues for final behaviour recognition. So as to validate the effectiveness of the designed spatial-temporal deep learning based model, we create a simulated driving behaviour dataset, containing 1237 videos with 6 different driving behavior for recognition. Experiment result shows that our proposed method obtains noticeable performance improvements compared to the existing methods.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Spatial-Temporal Fusion Convolutional Neural Network for Simulated Driving Behavior Recognition\",\"authors\":\"Yaocong Hu, MingQi Lu, Xiaobo Lu\",\"doi\":\"10.1109/ICARCV.2018.8581201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abnormal driving behaviour is one of the leading cause of terrible traffic accidents endangering human life. Therefore, study on driving behaviour surveillance has become essential to traffic security and public management. In this paper, we conduct this promising research and employ a two stream CNN framework for video-based driving behaviour recognition, in which spatial stream CNN captures appearance information from still frames, whilst temporal stream CNN captures motion information with pre-computed optical flow displacement between a few adjacent video frames. We investigate different spatial-temporal fusion strategies to combine the intra frame static clues and inter frame dynamic clues for final behaviour recognition. So as to validate the effectiveness of the designed spatial-temporal deep learning based model, we create a simulated driving behaviour dataset, containing 1237 videos with 6 different driving behavior for recognition. Experiment result shows that our proposed method obtains noticeable performance improvements compared to the existing methods.\",\"PeriodicalId\":395380,\"journal\":{\"name\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2018.8581201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

非正常驾驶行为是造成严重交通事故的主要原因之一。因此,对驾驶行为监控的研究已成为交通安全和公共管理的重要内容。在本文中,我们进行了这一有前途的研究,并采用两流CNN框架进行基于视频的驾驶行为识别,其中空间流CNN从静止帧中捕获外观信息,而时间流CNN通过预先计算的几个相邻视频帧之间的光流位移捕获运动信息。我们研究了不同的时空融合策略,将帧内静态线索和帧间动态线索结合起来进行最终的行为识别。为了验证所设计的基于时空深度学习的模型的有效性,我们创建了一个模拟驾驶行为数据集,其中包含1237个具有6种不同驾驶行为的视频进行识别。实验结果表明,与现有方法相比,该方法的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-Temporal Fusion Convolutional Neural Network for Simulated Driving Behavior Recognition
Abnormal driving behaviour is one of the leading cause of terrible traffic accidents endangering human life. Therefore, study on driving behaviour surveillance has become essential to traffic security and public management. In this paper, we conduct this promising research and employ a two stream CNN framework for video-based driving behaviour recognition, in which spatial stream CNN captures appearance information from still frames, whilst temporal stream CNN captures motion information with pre-computed optical flow displacement between a few adjacent video frames. We investigate different spatial-temporal fusion strategies to combine the intra frame static clues and inter frame dynamic clues for final behaviour recognition. So as to validate the effectiveness of the designed spatial-temporal deep learning based model, we create a simulated driving behaviour dataset, containing 1237 videos with 6 different driving behavior for recognition. Experiment result shows that our proposed method obtains noticeable performance improvements compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信