{"title":"H.264/ AVC CABAC熵编码的硬件结构二值化器设计","authors":"Asma Ben Hmida, S. Dhahri, A. Zitouni","doi":"10.1109/CISTEM.2014.7076749","DOIUrl":null,"url":null,"abstract":"The CABAC (Context Adaptive Binary Arithmetic Coding) in the H.264/AVC standard consists of binarizer, arithmetic encoder, and bit generator. This paper presents hardware architecture design of the binarizer part of the CABAC (Context-Based Adaptive Binary Arithmetic Coding) entropy encoder as defined in the H.264/AVC video compression standard. The proposed architecture avoids the support of all the binarizer method. The proposed architecture avoids the support of all the binarizer method. After implemented in Verilog-HDL and synthesized with Xilinx ISE Design the proposed architecture consumes about 394 slices and can operate at frequencies up to 267 MHz.","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"25 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hardware architecture binarizer design for the H.264/ AVC CABAC entropy coding\",\"authors\":\"Asma Ben Hmida, S. Dhahri, A. Zitouni\",\"doi\":\"10.1109/CISTEM.2014.7076749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CABAC (Context Adaptive Binary Arithmetic Coding) in the H.264/AVC standard consists of binarizer, arithmetic encoder, and bit generator. This paper presents hardware architecture design of the binarizer part of the CABAC (Context-Based Adaptive Binary Arithmetic Coding) entropy encoder as defined in the H.264/AVC video compression standard. The proposed architecture avoids the support of all the binarizer method. The proposed architecture avoids the support of all the binarizer method. After implemented in Verilog-HDL and synthesized with Xilinx ISE Design the proposed architecture consumes about 394 slices and can operate at frequencies up to 267 MHz.\",\"PeriodicalId\":115632,\"journal\":{\"name\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"volume\":\"25 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISTEM.2014.7076749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7076749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
H.264/AVC标准中的上下文自适应二进制算术编码(CABAC)由二进制化器、算术编码器和位生成器组成。本文介绍了H.264/AVC视频压缩标准中定义的基于上下文的自适应二进制算术编码(CABAC)熵编码器的二进制化部分的硬件结构设计。所提出的体系结构避免了所有二值化器方法的支持。所提出的体系结构避免了所有二值化器方法的支持。在Verilog-HDL中实现并与Xilinx ISE Design合成后,所提出的架构消耗约394个切片,可在高达267 MHz的频率下工作。
A hardware architecture binarizer design for the H.264/ AVC CABAC entropy coding
The CABAC (Context Adaptive Binary Arithmetic Coding) in the H.264/AVC standard consists of binarizer, arithmetic encoder, and bit generator. This paper presents hardware architecture design of the binarizer part of the CABAC (Context-Based Adaptive Binary Arithmetic Coding) entropy encoder as defined in the H.264/AVC video compression standard. The proposed architecture avoids the support of all the binarizer method. The proposed architecture avoids the support of all the binarizer method. After implemented in Verilog-HDL and synthesized with Xilinx ISE Design the proposed architecture consumes about 394 slices and can operate at frequencies up to 267 MHz.