带拒绝选项的二阶渐近最优离群序列检测

Lin Zhou, A. Hero, Yun Wei
{"title":"带拒绝选项的二阶渐近最优离群序列检测","authors":"Lin Zhou, A. Hero, Yun Wei","doi":"10.1109/ITW48936.2021.9611462","DOIUrl":null,"url":null,"abstract":"Motivated by practical machine learning applications, we revisit the outlying sequence detection problem (Li et al., TIT 2014) and derive fundamental limits of optimal detection when the reject option is allowed for outlying sequences. In the considered outlying sequence detection (OSD) problem, one is given multiple observed sequences, where all sequences are generated i.i.d. from a nominal distribution with at most one exception. The task is to discern the outlying sequence that is generated according to an anomalous distribution. In OSD, the nominal and anomalous distributions are unknown. In this paper, we consider the case where there is a reject option for the OSD, i.e., we reject the samples as insufficient for making a reliable decision (cf. Bartlett et al., JMLR 2008). We study the tradeoff among the probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of these error probabilities as a function of sequence length. We propose a second-order asymptotically optimal test that provides a finite sample approximation to the error probabilities.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"136 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-Order Asymptotically Optimal Outlying Sequence Detection with Reject Option\",\"authors\":\"Lin Zhou, A. Hero, Yun Wei\",\"doi\":\"10.1109/ITW48936.2021.9611462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by practical machine learning applications, we revisit the outlying sequence detection problem (Li et al., TIT 2014) and derive fundamental limits of optimal detection when the reject option is allowed for outlying sequences. In the considered outlying sequence detection (OSD) problem, one is given multiple observed sequences, where all sequences are generated i.i.d. from a nominal distribution with at most one exception. The task is to discern the outlying sequence that is generated according to an anomalous distribution. In OSD, the nominal and anomalous distributions are unknown. In this paper, we consider the case where there is a reject option for the OSD, i.e., we reject the samples as insufficient for making a reliable decision (cf. Bartlett et al., JMLR 2008). We study the tradeoff among the probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of these error probabilities as a function of sequence length. We propose a second-order asymptotically optimal test that provides a finite sample approximation to the error probabilities.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"136 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在实际机器学习应用的激励下,我们重新审视了外围序列检测问题(Li等人,TIT 2014),并在允许对外围序列进行拒绝选项时推导出最优检测的基本限制。在考虑的离群序列检测(OSD)问题中,给定多个观察序列,其中所有序列都是从标称分布中生成的,最多有一个例外。任务是辨别根据异常分布产生的离群序列。在OSD中,名义分布和异常分布是未知的。在本文中,我们考虑OSD存在拒绝选项的情况,即我们拒绝样本,因为样本不足以做出可靠的决策(参见Bartlett等人,JMLR 2008)。研究了在满足弱条件的测试中,误分类错误率、虚警率和误拒率随序列长度的减小率之间的权衡。我们提出了一个二阶渐近最优检验,它提供了误差概率的有限样本近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-Order Asymptotically Optimal Outlying Sequence Detection with Reject Option
Motivated by practical machine learning applications, we revisit the outlying sequence detection problem (Li et al., TIT 2014) and derive fundamental limits of optimal detection when the reject option is allowed for outlying sequences. In the considered outlying sequence detection (OSD) problem, one is given multiple observed sequences, where all sequences are generated i.i.d. from a nominal distribution with at most one exception. The task is to discern the outlying sequence that is generated according to an anomalous distribution. In OSD, the nominal and anomalous distributions are unknown. In this paper, we consider the case where there is a reject option for the OSD, i.e., we reject the samples as insufficient for making a reliable decision (cf. Bartlett et al., JMLR 2008). We study the tradeoff among the probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of these error probabilities as a function of sequence length. We propose a second-order asymptotically optimal test that provides a finite sample approximation to the error probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信