智能数据仓库在时空对象建模中的应用

G. Garani, Nunzio Cassavia, I. Savvas
{"title":"智能数据仓库在时空对象建模中的应用","authors":"G. Garani, Nunzio Cassavia, I. Savvas","doi":"10.4018/IJBDIA.2020010103","DOIUrl":null,"url":null,"abstract":"Data warehouse (DW) systems provide the best solution for intelligent data analysis and decision-making. Changes applied to data gradually in real life have to be projected to the DW. Slowly changing dimension (SCD) refers to the potential volatility of DW dimension members. The treatment of SCDs has a significant impact over the quality of data analysis. A new SCD type, Type N, is proposed in this research paper, which encapsulates volatile data into historical clusters. Type N preserves complete history of changes, additional tables, columns, and rows are not required, extra join operations are omitted, and surrogate keys are avoided. Type N is implemented and compared to other SCD types. Good candidates for practicing SCDs are spatiotemporal objects (i.e., objects whose shape or geometry evolves slowly over time). The case study used and implemented in this paper concerns shape-shifting constructions (i.e., buildings that respond to changing weather conditions or the way people use them). The results demonstrate the correctness and effectiveness of the proposed SCD Type N.","PeriodicalId":398232,"journal":{"name":"Int. J. Big Data Intell. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of an Intelligent Data Warehouse for Modelling Spatiotemporal Objects\",\"authors\":\"G. Garani, Nunzio Cassavia, I. Savvas\",\"doi\":\"10.4018/IJBDIA.2020010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data warehouse (DW) systems provide the best solution for intelligent data analysis and decision-making. Changes applied to data gradually in real life have to be projected to the DW. Slowly changing dimension (SCD) refers to the potential volatility of DW dimension members. The treatment of SCDs has a significant impact over the quality of data analysis. A new SCD type, Type N, is proposed in this research paper, which encapsulates volatile data into historical clusters. Type N preserves complete history of changes, additional tables, columns, and rows are not required, extra join operations are omitted, and surrogate keys are avoided. Type N is implemented and compared to other SCD types. Good candidates for practicing SCDs are spatiotemporal objects (i.e., objects whose shape or geometry evolves slowly over time). The case study used and implemented in this paper concerns shape-shifting constructions (i.e., buildings that respond to changing weather conditions or the way people use them). The results demonstrate the correctness and effectiveness of the proposed SCD Type N.\",\"PeriodicalId\":398232,\"journal\":{\"name\":\"Int. J. Big Data Intell. Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Big Data Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJBDIA.2020010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Big Data Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJBDIA.2020010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据仓库(DW)系统为智能数据分析和决策提供了最佳解决方案。在现实生活中逐渐应用于数据的变化必须投射到DW中。慢变维(SCD)是指DW维成员的潜在波动性。scd的处理对数据分析的质量有重大影响。本文提出了一种新的SCD类型N型,它将易失性数据封装到历史集群中。Type N保留了完整的更改历史,不需要额外的表、列和行,省略了额外的连接操作,并且避免了代理键。实现类型N并与其他SCD类型进行比较。练习scd的最佳候选对象是时空对象(即形状或几何形状随时间缓慢演变的对象)。本文中使用和实施的案例研究涉及可变形建筑(即,响应不断变化的天气条件或人们使用它们的方式的建筑物)。结果证明了所提出的N型SCD的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of an Intelligent Data Warehouse for Modelling Spatiotemporal Objects
Data warehouse (DW) systems provide the best solution for intelligent data analysis and decision-making. Changes applied to data gradually in real life have to be projected to the DW. Slowly changing dimension (SCD) refers to the potential volatility of DW dimension members. The treatment of SCDs has a significant impact over the quality of data analysis. A new SCD type, Type N, is proposed in this research paper, which encapsulates volatile data into historical clusters. Type N preserves complete history of changes, additional tables, columns, and rows are not required, extra join operations are omitted, and surrogate keys are avoided. Type N is implemented and compared to other SCD types. Good candidates for practicing SCDs are spatiotemporal objects (i.e., objects whose shape or geometry evolves slowly over time). The case study used and implemented in this paper concerns shape-shifting constructions (i.e., buildings that respond to changing weather conditions or the way people use them). The results demonstrate the correctness and effectiveness of the proposed SCD Type N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信