{"title":"约束卡尔曼滤波用于小型无人机飞行自适应预测","authors":"M. Andreetto, L. Palopoli, D. Fontanelli","doi":"10.1109/I2MTC.2019.8827131","DOIUrl":null,"url":null,"abstract":"The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constrained Kalman Filter for Adaptive Prediction in Minidrone Flight\",\"authors\":\"M. Andreetto, L. Palopoli, D. Fontanelli\",\"doi\":\"10.1109/I2MTC.2019.8827131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances.\",\"PeriodicalId\":132588,\"journal\":{\"name\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2019.8827131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8827131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constrained Kalman Filter for Adaptive Prediction in Minidrone Flight
The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances.