用粗糙集编辑k-NN方法中的训练集

Y. Mota, S. Joseph, Yuniesky Lezcano, Rafael Bello, M. Lorenzo, Yaimara Pizano
{"title":"用粗糙集编辑k-NN方法中的训练集","authors":"Y. Mota, S. Joseph, Yuniesky Lezcano, Rafael Bello, M. Lorenzo, Yaimara Pizano","doi":"10.1109/ISDA.2005.98","DOIUrl":null,"url":null,"abstract":"Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using rough sets to edit training set in k-NN method\",\"authors\":\"Y. Mota, S. Joseph, Yuniesky Lezcano, Rafael Bello, M. Lorenzo, Yaimara Pizano\",\"doi\":\"10.1109/ISDA.2005.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

粗糙集理论(RST)是一种数据分析技术。在本文中,我们使用RST来改进k-NN方法的性能。RST用于编辑训练集。我们提出了基于上下近似的两种训练集编辑方法。实验结果表明,使用这些技术的k-NN具有令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using rough sets to edit training set in k-NN method
Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信