一种客观评价图像补漆效果质量的方法

D. Seychell, C. J. Debono
{"title":"一种客观评价图像补漆效果质量的方法","authors":"D. Seychell, C. J. Debono","doi":"10.1109/MELECON48756.2020.9140597","DOIUrl":null,"url":null,"abstract":"Image Inpainting techniques are generally challenging to evaluate objectively due to the lack of comparative data, as a reference image of the new scene, does not exist.. This paper presents an approach that uses our newly released dataset specifically designed to allow objective evaluation of inpainting techniques. In this work we demonstrate how traditional in-painting techniques can be objectively evaluated and compared together with modern deep learning and adversarial approaches. We further demonstrate how an unsupervised technique compares better than deep learning approaches.","PeriodicalId":268311,"journal":{"name":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Approach for Objective Quality Assessment of Image Inpainting Results\",\"authors\":\"D. Seychell, C. J. Debono\",\"doi\":\"10.1109/MELECON48756.2020.9140597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Inpainting techniques are generally challenging to evaluate objectively due to the lack of comparative data, as a reference image of the new scene, does not exist.. This paper presents an approach that uses our newly released dataset specifically designed to allow objective evaluation of inpainting techniques. In this work we demonstrate how traditional in-painting techniques can be objectively evaluated and compared together with modern deep learning and adversarial approaches. We further demonstrate how an unsupervised technique compares better than deep learning approaches.\",\"PeriodicalId\":268311,\"journal\":{\"name\":\"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON48756.2020.9140597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON48756.2020.9140597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于缺乏比较数据,图像绘画技术通常难以客观评价,作为新场景的参考图像,不存在。本文提出了一种方法,该方法使用我们新发布的数据集,专门设计用于客观评估喷漆技术。在这项工作中,我们展示了如何客观地评估传统的绘画技术,并将其与现代深度学习和对抗方法进行比较。我们进一步展示了无监督技术如何比深度学习方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach for Objective Quality Assessment of Image Inpainting Results
Image Inpainting techniques are generally challenging to evaluate objectively due to the lack of comparative data, as a reference image of the new scene, does not exist.. This paper presents an approach that uses our newly released dataset specifically designed to allow objective evaluation of inpainting techniques. In this work we demonstrate how traditional in-painting techniques can be objectively evaluated and compared together with modern deep learning and adversarial approaches. We further demonstrate how an unsupervised technique compares better than deep learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信