聚类样本IV模型的自举推理方法

K. Finlay, L. Magnusson
{"title":"聚类样本IV模型的自举推理方法","authors":"K. Finlay, L. Magnusson","doi":"10.2139/ssrn.2574521","DOIUrl":null,"url":null,"abstract":"Microeconomic data often have within-cluster dependence. This dependence affects standard error estimation and inference in regression models, including the instrumental variables model. Standard corrections assume that the number of clusters is large, but when this is not the case, Wald and weak-instrument-robust tests can be severely over-sized. We examine the use of bootstrap methods to construct appropriate critical values for these tests when the number of clusters is small. We find that variants of the wild bootstrap perform well and reduce absolute size bias significantly, independent of instrument strength or cluster size. We also provide guidance in the choice among possible weak-instrument-robust tests when data have cluster dependence. These results are applicable to fixed-effects panel data models.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bootstrap Methods for Inference with Cluster Sample IV Models\",\"authors\":\"K. Finlay, L. Magnusson\",\"doi\":\"10.2139/ssrn.2574521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microeconomic data often have within-cluster dependence. This dependence affects standard error estimation and inference in regression models, including the instrumental variables model. Standard corrections assume that the number of clusters is large, but when this is not the case, Wald and weak-instrument-robust tests can be severely over-sized. We examine the use of bootstrap methods to construct appropriate critical values for these tests when the number of clusters is small. We find that variants of the wild bootstrap perform well and reduce absolute size bias significantly, independent of instrument strength or cluster size. We also provide guidance in the choice among possible weak-instrument-robust tests when data have cluster dependence. These results are applicable to fixed-effects panel data models.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2574521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2574521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

微观经济数据往往具有簇内依赖性。这种依赖性影响回归模型的标准误差估计和推断,包括工具变量模型。标准修正假设簇的数量很大,但如果不是这样,Wald和弱仪器鲁棒性测试可能会严重过大。我们研究了在集群数量较少的情况下,使用bootstrap方法为这些测试构建适当的临界值。我们发现野生bootstrap的变体表现良好,并且显着减少绝对尺寸偏差,与仪器强度或聚类大小无关。当数据具有聚类依赖性时,我们还提供了在可能的弱仪器鲁棒性测试中选择的指导。这些结果适用于固定效应面板数据模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap Methods for Inference with Cluster Sample IV Models
Microeconomic data often have within-cluster dependence. This dependence affects standard error estimation and inference in regression models, including the instrumental variables model. Standard corrections assume that the number of clusters is large, but when this is not the case, Wald and weak-instrument-robust tests can be severely over-sized. We examine the use of bootstrap methods to construct appropriate critical values for these tests when the number of clusters is small. We find that variants of the wild bootstrap perform well and reduce absolute size bias significantly, independent of instrument strength or cluster size. We also provide guidance in the choice among possible weak-instrument-robust tests when data have cluster dependence. These results are applicable to fixed-effects panel data models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信