基于DQN的计算机视觉注意力生成器

Jordan B. Chipka, Shuqing Zeng, Thanura R. Elvitigala, P. Mudalige
{"title":"基于DQN的计算机视觉注意力生成器","authors":"Jordan B. Chipka, Shuqing Zeng, Thanura R. Elvitigala, P. Mudalige","doi":"10.1109/ICCVW54120.2021.00329","DOIUrl":null,"url":null,"abstract":"A significant obstacle to achieving autonomous driving (AD) and advanced driver-assistance systems (ADAS) functionality in passenger vehicles is high-fidelity perception at a sufficiently low cost of computation and sensors. An area of research that aims to address this challenge takes inspiration from human foveal vision by using attention-based sensing. This work presents an end-to-end computer vision-based Deep Q-Network (DQN) technique that intelligently selects a priority region of an image to place greater attention to achieve better perception performance. This method is evaluated on the Berkeley Deep Drive (BDD) dataset. Results demonstrate that a substantial improvement in perception performance can be attained – compared to a baseline method – at a minimal cost in terms of time and processing.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer Vision-Based Attention Generator using DQN\",\"authors\":\"Jordan B. Chipka, Shuqing Zeng, Thanura R. Elvitigala, P. Mudalige\",\"doi\":\"10.1109/ICCVW54120.2021.00329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant obstacle to achieving autonomous driving (AD) and advanced driver-assistance systems (ADAS) functionality in passenger vehicles is high-fidelity perception at a sufficiently low cost of computation and sensors. An area of research that aims to address this challenge takes inspiration from human foveal vision by using attention-based sensing. This work presents an end-to-end computer vision-based Deep Q-Network (DQN) technique that intelligently selects a priority region of an image to place greater attention to achieve better perception performance. This method is evaluated on the Berkeley Deep Drive (BDD) dataset. Results demonstrate that a substantial improvement in perception performance can be attained – compared to a baseline method – at a minimal cost in terms of time and processing.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在乘用车中实现自动驾驶(AD)和高级驾驶辅助系统(ADAS)功能的一个重大障碍是在足够低的计算和传感器成本下实现高保真度感知。一个旨在解决这一挑战的研究领域,通过使用基于注意力的传感,从人类中央凹视觉中获得灵感。这项工作提出了一种基于端到端计算机视觉的深度q -网络(DQN)技术,该技术可以智能地选择图像的优先区域,以给予更多的关注,以获得更好的感知性能。该方法在Berkeley Deep Drive (BDD)数据集上进行了评估。结果表明,与基线方法相比,以最小的时间和处理成本,可以获得感知性能的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer Vision-Based Attention Generator using DQN
A significant obstacle to achieving autonomous driving (AD) and advanced driver-assistance systems (ADAS) functionality in passenger vehicles is high-fidelity perception at a sufficiently low cost of computation and sensors. An area of research that aims to address this challenge takes inspiration from human foveal vision by using attention-based sensing. This work presents an end-to-end computer vision-based Deep Q-Network (DQN) technique that intelligently selects a priority region of an image to place greater attention to achieve better perception performance. This method is evaluated on the Berkeley Deep Drive (BDD) dataset. Results demonstrate that a substantial improvement in perception performance can be attained – compared to a baseline method – at a minimal cost in terms of time and processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信