光伏复合抛物面聚光器的设计与参数分析

F. Masood, P. Nallagownden, I. Elamvazuthi, J. Akhter, Mohammad Azad Alam, Mohammad Yusuf
{"title":"光伏复合抛物面聚光器的设计与参数分析","authors":"F. Masood, P. Nallagownden, I. Elamvazuthi, J. Akhter, Mohammad Azad Alam, Mohammad Yusuf","doi":"10.1109/ICIAS49414.2021.9642579","DOIUrl":null,"url":null,"abstract":"This paper presents the design process and analyses the interrelationship amongst the critical design parameters of a low concentration Compound Parabolic Concentrator well suited for rooftop photovoltaic applications. The compound parabolic concentrator (CPC) is a non-imaging concentrator used to effectively concentrate solar radiation over a photovoltaic module to obtain a larger output with fewer PV cells. The CPC, intended for PV applications, was designed for an absorber width of78 mm and an acceptance half-angle of200. A MATLAB code was developed to generate a CPC profile using design equations. The implications of diverse design parameters for CPC height, entry aperture width, and total mirror area were examined. The designed concentrator was then truncated to achieve material saving and avoid multiple reflections of incident rays to obtain better optical efficiency. The repercussions of truncating the upper portions of CPC were investigated to determine the optimum truncation position. The truncated CPC height for different truncation positions was compared with full height. The height and aperture width were computed for different acceptance half-angles and concentration ratios. The effect of PV absorber width on the entry aperture and total height was also analyzed. The interrelationship between optical concentration ratio and acceptance half-angle was demonstrated for various acceptance half-angles. The resulting two-dimensional geometry is best suited for PV applications.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Parametric Analysis of Compound Parabolic Concentrator for Photovoltaic Applications\",\"authors\":\"F. Masood, P. Nallagownden, I. Elamvazuthi, J. Akhter, Mohammad Azad Alam, Mohammad Yusuf\",\"doi\":\"10.1109/ICIAS49414.2021.9642579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design process and analyses the interrelationship amongst the critical design parameters of a low concentration Compound Parabolic Concentrator well suited for rooftop photovoltaic applications. The compound parabolic concentrator (CPC) is a non-imaging concentrator used to effectively concentrate solar radiation over a photovoltaic module to obtain a larger output with fewer PV cells. The CPC, intended for PV applications, was designed for an absorber width of78 mm and an acceptance half-angle of200. A MATLAB code was developed to generate a CPC profile using design equations. The implications of diverse design parameters for CPC height, entry aperture width, and total mirror area were examined. The designed concentrator was then truncated to achieve material saving and avoid multiple reflections of incident rays to obtain better optical efficiency. The repercussions of truncating the upper portions of CPC were investigated to determine the optimum truncation position. The truncated CPC height for different truncation positions was compared with full height. The height and aperture width were computed for different acceptance half-angles and concentration ratios. The effect of PV absorber width on the entry aperture and total height was also analyzed. The interrelationship between optical concentration ratio and acceptance half-angle was demonstrated for various acceptance half-angles. The resulting two-dimensional geometry is best suited for PV applications.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种适合屋顶光伏应用的低浓度复合抛物面聚光器的设计过程,并分析了关键设计参数之间的相互关系。复合抛物面聚光器(CPC)是一种非成像聚光器,用于有效地将太阳辐射集中在光伏组件上,以更少的光伏电池获得更大的输出。用于光伏应用的CPC的设计吸收器宽度为78毫米,接收半角为200。开发了MATLAB代码,利用设计方程生成CPC轮廓。研究了不同设计参数对CPC高度、入口孔径宽度和总反射镜面积的影响。然后将设计好的聚光器截短,既节省了材料,又避免了入射光线的多次反射,从而获得更好的光学效率。研究了截断CPC上部的影响,以确定最佳截断位置。将不同截尾位置的截尾高度与全高度进行比较。计算了不同接收半角和浓度比下的高度和孔径宽度。分析了PV吸收体宽度对入口孔径和总高度的影响。在不同的接收半角下,证明了光浓缩比与接收半角之间的相互关系。由此产生的二维几何结构最适合光伏应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Parametric Analysis of Compound Parabolic Concentrator for Photovoltaic Applications
This paper presents the design process and analyses the interrelationship amongst the critical design parameters of a low concentration Compound Parabolic Concentrator well suited for rooftop photovoltaic applications. The compound parabolic concentrator (CPC) is a non-imaging concentrator used to effectively concentrate solar radiation over a photovoltaic module to obtain a larger output with fewer PV cells. The CPC, intended for PV applications, was designed for an absorber width of78 mm and an acceptance half-angle of200. A MATLAB code was developed to generate a CPC profile using design equations. The implications of diverse design parameters for CPC height, entry aperture width, and total mirror area were examined. The designed concentrator was then truncated to achieve material saving and avoid multiple reflections of incident rays to obtain better optical efficiency. The repercussions of truncating the upper portions of CPC were investigated to determine the optimum truncation position. The truncated CPC height for different truncation positions was compared with full height. The height and aperture width were computed for different acceptance half-angles and concentration ratios. The effect of PV absorber width on the entry aperture and total height was also analyzed. The interrelationship between optical concentration ratio and acceptance half-angle was demonstrated for various acceptance half-angles. The resulting two-dimensional geometry is best suited for PV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信