{"title":"关于奇异等价和幂等的注解","authors":"Dawei Shen","doi":"10.1090/PROC/15604","DOIUrl":null,"url":null,"abstract":"Let $\\Lambda$ be an Artin algebra and let $e$ be an idempotent in $\\Lambda$. We study certain functors which preserve the singularity categories. Suppose $\\mathrm{pd}\\Lambda e_{e\\Lambda e}<\\infty$ and $\\mathrm{id}_\\Lambda\\tfrac{\\Lambda/\\langle e\\rangle}{\\mathrm{rad}\\Lambda/\\langle e\\rangle} < \\infty$, we show that there is a singular equivalence between $e\\Lambda e$ and $\\Lambda$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A note on singular equivalences and idempotents\",\"authors\":\"Dawei Shen\",\"doi\":\"10.1090/PROC/15604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Lambda$ be an Artin algebra and let $e$ be an idempotent in $\\\\Lambda$. We study certain functors which preserve the singularity categories. Suppose $\\\\mathrm{pd}\\\\Lambda e_{e\\\\Lambda e}<\\\\infty$ and $\\\\mathrm{id}_\\\\Lambda\\\\tfrac{\\\\Lambda/\\\\langle e\\\\rangle}{\\\\mathrm{rad}\\\\Lambda/\\\\langle e\\\\rangle} < \\\\infty$, we show that there is a singular equivalence between $e\\\\Lambda e$ and $\\\\Lambda$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\Lambda$ be an Artin algebra and let $e$ be an idempotent in $\Lambda$. We study certain functors which preserve the singularity categories. Suppose $\mathrm{pd}\Lambda e_{e\Lambda e}<\infty$ and $\mathrm{id}_\Lambda\tfrac{\Lambda/\langle e\rangle}{\mathrm{rad}\Lambda/\langle e\rangle} < \infty$, we show that there is a singular equivalence between $e\Lambda e$ and $\Lambda$.