{"title":"墨球模型作为手写识别的特征","authors":"N. Howe, Andreas Fischer, Baptiste Wicht","doi":"10.1109/ICFHR.2016.0030","DOIUrl":null,"url":null,"abstract":"Inkball models provide a tool for matching and comparison of spatially structured markings such as handwritten characters and words. Hidden Markov models offer a framework for decoding a stream of text in terms of the most likely sequence of causal states. Prior work with HMM has relied on observation of features that are correlated with underlying characters, without modeling them directly. This paper proposes to use the results of inkball-based character matching as a feature set input directly to the HMM. Experiments indicate that this technique outperforms other tested methods at handwritten word recognition on a common benchmark when applied without normalization or text deslanting.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inkball Models as Features for Handwriting Recognition\",\"authors\":\"N. Howe, Andreas Fischer, Baptiste Wicht\",\"doi\":\"10.1109/ICFHR.2016.0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inkball models provide a tool for matching and comparison of spatially structured markings such as handwritten characters and words. Hidden Markov models offer a framework for decoding a stream of text in terms of the most likely sequence of causal states. Prior work with HMM has relied on observation of features that are correlated with underlying characters, without modeling them directly. This paper proposes to use the results of inkball-based character matching as a feature set input directly to the HMM. Experiments indicate that this technique outperforms other tested methods at handwritten word recognition on a common benchmark when applied without normalization or text deslanting.\",\"PeriodicalId\":194844,\"journal\":{\"name\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2016.0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inkball Models as Features for Handwriting Recognition
Inkball models provide a tool for matching and comparison of spatially structured markings such as handwritten characters and words. Hidden Markov models offer a framework for decoding a stream of text in terms of the most likely sequence of causal states. Prior work with HMM has relied on observation of features that are correlated with underlying characters, without modeling them directly. This paper proposes to use the results of inkball-based character matching as a feature set input directly to the HMM. Experiments indicate that this technique outperforms other tested methods at handwritten word recognition on a common benchmark when applied without normalization or text deslanting.